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Abstract
Sentiment analysis is a domain of natural language processing
(NLP) focusing on interpreting emotions, attitudes, and sentiments
primarily from written text. However, recent research has extended
this analysis to include audio and visual data, creating a burgeon-
ing field known as Multimodal Sentiment Analysis (MSA). MSA
is an evolving discipline dedicated to comprehending emotional
expressions and sentiments in not only text but also acoustic and
visual inputs. Many MSA models have been built in recent years
with different frameworks [6], from statistical non-machine learn-
ing techniques to complex neural networks. However, not many
focus on generalization performance, which is the ability to predict
unprecedented data. This project focuses on using a pre-trained
Long Short-Term Memory (LSTM) based network together with
Tensor Fusion Network (TFN) and Select-Additive Learning (SAL)
algorithm to improve the model’s generalizability.

1 Introduction
Sentiment analysis, a crucial aspect of NLP within the domain
of artificial intelligence, has traditionally focused on interpreting
emotions and attitudes conveyed through written text. However,
the evolution of this field has led to the emergence of Multimodal
Sentiment Analysis (MSA), extending the analysis to include audio
and visual data. The significance ofMSA lies in a holistic assessment
of emotions and sentiments through multiple modalities, reflecting
the multimodal nature of our interactions in the world [6].

While unimodal sentiment analysis is important, particularly for
applications like automating customer review analysis [5], textual
information alone often falls short of fully capturing the conveyed
sentiments. By integrating text, audio, and video, MSA enables
the development of more detailed and accurate sentiment analysis
models. This advancement extends the applicability of sentiment
analysis across diverse domains, from marketing to mental health
support [10], where interpreting the full spectrum of human senti-
ment is integral.

Recently researchers have utilized machine learning (ML) mod-
els, such as neural networks like Convolutional Neural Networks
(CNN), and Large Language Models (LLM), including GPT [4] and
BERT [3]. The integration of these models into MSA frameworks
introduces trainable feature extractors for diverse modalities, signif-
icantly enhancing the accuracy of MSAmodels. Additionally, efforts
in the MSA field have focused on creating a general model that
can effectively analyze sentiments across different video themes
and sources. Improving the generalizability of a model enhances its
ability to comprehend and analyze sentiments from a wide variety
of sources, making it a versatile tool in practical applications.

Figure 1: Outer product during tensor fusion

However, improving the generalizability of MSA models can be
hard for a few reasons. One being the limited sizes and ranges of
datasets. With limited availability in the ready-to-use multimodal
dataset, the range of data a model can train on is automatically
limited, making it hard to build a general model. Furthermore, issues
with confounding factors are substantial especially in small datasets.
Confounding factors are false information which consequently
misleads the training process ofMLmodels. For example,Wang et al.
illustrate how something as incidental as speakers wearing glasses
could become a confounding factor [9]. If all speakers who wear
glasses in a dataset express negative sentiments, the model might
incorrectly learn to associate glasses with negative sentiments. The
smaller the dataset, the more significant the influence and bias of
such factors.

This paper specifically focuses on enhancing the generalization
performance of MSAmodels by tackling the presented issues within
the MSA field. More specifically, we delve into the various modal-
ities integral to MSA, including text, audio, and visual cues. Our
exploration extends to feature extraction methods unique to each
modality and the subsequent fusion methods of these features for
sentiment predictions. We then discuss the selection of models to
enhance generalization capabilities, ultimately proposing a new
general MSA model named Select Additive Learning - Tensor Fu-
sion Long Short-Term Memory (SAL-TFLSTM) with the goal of
advancing the field of MSA.

2 Related Works
Research in the field of MSA has been growing rapidly with better
models and more comprehensive dataset for model training. This
paper focuses on two state-of-the-art MSA models which focuses
on the aspect of generalizability.
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Table 1: Comparison of General MSA models

Model Fusion Method Dataset
SAL-CNN Early / Late Fusion MOSI, MOUD

Tensor Fusion Network Early Fusion MOSI, MOSEI
TransModality End-2-End MOSI, IEMOCAP

2.1 Tensor Fusion Network
Multimodal fusion is the process of integrating information from
multiple modalities to generate a predictive sentiment score. This
fusion can occur at different stages of the modeling process: ei-
ther at the input phase or at the classification phase. Early Fusion,
occurring at the input phase, typically involves a straightforward
concatenation of tensors from all modalities. In contrast, Late Fu-
sion takes place at the classification phase, where separate models
are used for each modality, and their outputs are combined subse-
quently.

A notable approach in multimodal fusion is the Tensor Fusion
Network (TFN), developed by Zadeh et al. in 2017. [11] This is an
Early Fusion method that effectively models both intermodality and
intramodality dynamics using Kronecker product, offering a more
comprehensive understanding of multimodal interactions. The TFN
consists of three substructures: 1) Modality Embedding Subnetwork,
2) Tensor Fusion Layer, and 3) Sentiment Inference Subnetwork. In
the original work, the spoken language embedding subnetwork
consists of a long short-term memory (LSTM) network with forget
gates to learn semantics in a sequential fashion, while the acoustic
and visual embedding networks consist of 3 layers of 32 ReLU units.
The embedding subnetwork models the intramodality dynamics
from the extracted features of each modality. The tensor fusion
layer, demonstrated in Figure 1, takes the resulting embeddings of
all modalities and performs the Kronecker product (outer product
of matrices) to build a high-dimensional tensor ready to be read and
analyzed by amachine learningmodel. In their work using the CMU-
MOSI dataset, the TFN achieved the highest accuracy compared
to other contemporary state-of-the-art models, demonstrating its
effectiveness in handling complex multimodal data.

2.2 Select-Additive Learning
Confounding factors are external variables or influences that can
mislead a machine learning model during its training phase. They
inadvertently introduce bias, making it challenging for the model
to accurately learn the true relationships within the data, as it
might attribute effects to the wrong causes. This can significantly
compromise the validity of the model’s predictions, especially when
using a relatively small dataset.

The Select-Additive Learning (SAL) algorithm, introduced by
Wang et al. in 2017 [9], addresses these issues of confounding fac-
tors. The SAL algorithm is specifically designed to improve the
robustness of discriminative neural networks by mitigating the
effects of these confounding factors through a two-phase process:
the selection phase and the addition phase.

The primary goal of the selection phase is to identify and isolate
the dimensions in the original feature representations that are
influenced by confounding factors, such as identity traits (e.g., race,

ethnicity, or physical attributes like wearing glasses). This is critical
inMSA,where such identity features should not affect the sentiment
outcome. During this phase, the algorithm employs a specialized
loss function that includes a scalar to control the influence of a
sparsity regularizer [9]. This helps in effectively pinpointing the
confounding dimensions by emphasizing feature selection that
contributes genuinely to sentiment analysis while down-tuning
irrelevant features.

After isolating the confounding dimensions, the addition phase
introduces Gaussian noise, or white noise, to the data. This step
simulates random variability or errors in the data, which aids in
training the neural network to focus on relevant features by dis-
regarding those confounded by external factors. The addition of
noise helps to ensure that the model is trained on a dataset that is
essentially free of confounding influences, thereby enhancing the
robustness and generalizability of the model.

In the work of Wang et al., the SAL algorithm was optimized
for fine-tuning a 7-layer CNN-based network pre-trained on the
CMU-MOSI dataset [12] to increase its generalizability.

3 SAL-TFLSTM
The primary goal of this study is to enhance the generalizabil-
ity of MSA models beyond existing frameworks such as TFN and
SAL by merging their methodologies into a comprehensive model
called Select-Additive Learning Tensor Fusion LSTM or, simply,
SAL-TFLSTM. In this unified model, data modalities are integrated
at the input level using tensor fusion, which effectively merges tex-
tual, visual, and acoustic data into a cohesive tensor. This tensor is
then processed through a bi-directional LSTM, capable of handling
variable sequence lengths. Finally, SAL is applied to further fine-
tune the parameters of the pre-trained LSTM-based MSA model.
This refinement focuses on identifying and adjusting for confound-
ing factors, which would, in turn, improve the model’s ability to
intricately learn from complex multimodal data and deduce an
accurate sentiment prediction.

3.1 Feature Extraction

Figure 2: Feature extraction method used in SAL-TFLSTM
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Figure 3: Data architecture diagram of SAL-TFLSTM

3.1.1 Textual
For textual feature extraction, we use GLoVE [7]. GLoVE is an
unsupervised learning algorithm for generating vector represen-
tations of words. SAL-TFLSTM extracts textual features using the
GLoVE 300-dimensional word vector, where hence the name, each
word vector is represented in a 300-dimensional matrix. These vec-
tors are created by analyzing word co-occurrences in a large corpus.
The algorithm constructs a co-occurrence matrix that counts how
frequently words appear together within a certain context window
in the corpus. This feature extractor precisely captures not just
the frequency but also the deeper semantic relationships between
words.

3.1.2 Acoustic
Collaborative Voice Analysis Repository, or COVAREP, is an open-
source voice analysis tool contributed by Degottex et al [2]. It was
chosen for acoustic feature extraction because it provides a wide
range of algorithms optimized for voice and speech analysis. CO-
VAREP offers tools for fundamental frequency extraction, voicing
decision metrics, and detailed glottal source modeling, and many
more. These features are essential for high-precision acoustic anal-
ysis, which can significantly enhance the capability of MSA models
to capture acoustic details. Moreover, the open-source software is
built on a collaborative effort ensuring that it continually incorpo-
rates updates with the latest advancements in the field.

3.1.3 Visual
For visual feature extraction, we use OpenFace [1], an open-source
library providing tools for facial expression analysis. This software
is particularly suitable for MSA tasks, as it can accurately detect and

analyze facial expressions that indicate emotional states, which can
be integrated with other data modalities. OpenFace’s high accuracy,
real-time processing capabilities, and ease of integration with other
data streams make it a robust choice for applications that require
comprehensive sentiment analysis across different communication
channels.

3.2 SAL for LSTM
The SAL algorithm was originally developed for optimizing the
learning of CNN based MSA models. However, the issue with CNN
based architecture is that it cannot learn the intra-modality dynam-
ics. Since multimodal datasets are extracted from online videos, all
modalities are sequential datapoints of a video segment from cer-
tain time frame. For this reason, LSTM based architecture seemed to
be a more feasible choice. Consequently, SAL needed to be adapted
for use with LSTMs. Despite the change in architecture, the core
principles of SAL remain unchanged: the prediction of confound-
ing influences and their mitigation. For LSTMs, this adaptation
shifts focus from spatial to temporal features within the LSTM’s
hidden states. The goal is to develop a mechanism that identifies
and quantifies the extent to which these hidden states are affected
by undesirable biases, such as irrelevant stylistic elements in text,
which do not contribute to the task of sentiment analysis.

4 Experiments
The experiments are designed to assess the generalizability of the
SAL-TFLSTM compared to state-of-the-art approaches, utilizing a
cross-validation method. This involves using separate datasets for
training and testing. By evaluating the model’s prediction accuracy
on data it has not been trained on, we can effectively determine its
generalizability to unseen data.

4.1 Datasets
The cross-validation is done with the CMU-MOSI and CMU-MOSEI
datasets primarily because of the consistent output metrics in both
datasets. Both are annotated with sentiment and emotion intensi-
ties on a scale of [-3,3], offering a consistent basis for comparing
and validating model performance across distinctive multimodal
datasets. The consistency in the output format is important when
testing the generalizability of a model, as it ensures that the devel-
oped model can be rigorously evaluated under similar standards,
ensuring more fair experiment results.

The process of cross-validation involves splitting each dataset
into training and testing sets, then training models on one set and
validating them on another to assess their predictive accuracy and
generalizability. By employing CMU-MOSI and CMU-MOSEI, the
models can be exposed to a wider array of video blog data and
differing expressions of sentiment and emotion, enhancing their
robustness and applicability. This method not only helps in fine-
tuning the models to reduce overfitting but also ensures that the
learned patterns are not specific to one particular dataset. Such a
strategy is particularly effective in research areas like sentiment
analysis and emotion recognition, where the ability to accurately
interpret and predict across different contexts and modalities is
crucial.



Arata M. Katayama

4.1.1 CMU-MOSI
The CMU-MOSI dataset, as referenced in Zadeh et al. (2016), fo-
cuses on sentiment and subjectivity analysis across online opinion
videos from YouTube vlogs. This multimodal dataset comprises
3,702 video segments, of which 2,199 are opinion segments specifi-
cally annotated for subjectivity and sentiment analysis, and 1,503
are objective segments considered to have neutral sentiment. It
features 93 videos with 89 diverse speakers, ensuring a demograph-
ically balanced dataset. Each video is manually transcribed and
meticulously annotated for both subjectivity and sentiment inten-
sity with a range of [-3,3]. Multimodal data alignment must be
ensured as this process allows for an in-depth examination of how
different modalities influence the perception and analysis of senti-
ment and subjectivity in multimedia content.

4.1.2 CMU-MOSEI
A larger and more comprehensive dataset is the CMU-MOSEI
dataset [13]. Currently the largest multimodal dataset based in Eng-
lish, it offers an extensive resource for the analysis of sentiment and
emotion in online opinion videos. It features annotations for 23,453
video segments from 1,000 distinct speakers across 250 topics, pro-
viding a rich and diverse collection of multimodal language data.
Each segment is manually transcribed and aligned with detailed au-
dio to phoneme levels, encompassing language, visual expressions,
and acoustic modalities.

4.2 Evaluation Metric
Since the sentiment labels are floating points within the range [-3,3]
for both datasets, regression analysis was the most appropriate. For
this reason, the accuracy of the model was measured using Mean
Squared Error (MSE) and Mean Average Error (MAE).

4.3 Procedures
The three models, Early Fusion LSTM (EFLSTM), SAL-EFLSTM,
and SAL-TFLSTM, are evaluated and compared to assess the impact
of the SAL algorithm and tensor fusion method on generalizability.
Their performance is analyzed across four different experiments.
The initial two experiments focus on measuring the relative accu-
racy of theMSAmodels, while the subsequent two aim to determine
their generalized accuracy.

• Exp. 1: Trained and tested on CMU-MOSI
• Exp. 2: Trained and tested on CMU-MOSEI
• Exp. 3: Trained on CMU-MOSI, tested on CMU-MOSEI
• Exp. 4: Trained on CMU-MOSEI, tested on CMU-MOSI

5 Experimental Results
5.1 Within Data
Table 2 shows the results of experiments 1 and 2, where all models
were trained and tested on different portions of the same dataset.
The effectiveness of the SAL algorithm is evident from the MSE
values observed when comparing the EFLSTM and SAL-EFLSTM,
both trained and tested on the CMU-MOSI dataset. With an output
range of [-3, 3], anMSE value of 3.364 for the EFLSTM indicates poor
prediction accuracy. However, the introduction of the SAL method
reduced the MSE value by nearly a factor of three, underscoring the
SAL algorithm’s significance, particularly when applied to smaller

datasets. The influence of the SAL algorithm was also noticeable on
the models trained and tested on the CMU-MOSEI dataset, though
the improvements were less apparent than those observed with the
earlier model.

Table 2: Within Datasets

Model Modalities Metrics MOSI MOSEI

TSP 1.544 1.472
EFLSTM t+a+v MSE 3.364 2.913

MAE 1.544 1.472
TSP 1.820 1.820

SAL-EFLSTM t+a+v MSE 1.249 1.249
MAE 0.838 0.838

SAL-TFLSTM t+a+v - - -

5.2 Cross Validation
Table 3 shows the results of experiments 3 and 4, where all models
were trained and tested on different datasets.

Table 3: Cross-Validation

Model Modalities Metrics MOSI MOSEI

EFLSTM t+a+v - - -
SAL-EFLSTM t+a+v - - -
SAL-TFLSTM t+a+v - - -

It was not feasible to conduct cross-validation of the models due
to the complexities involved in adjusting model parameter sizes.
Consequently, assessing the generalizability of these models is a
challenge that will need to be addressed in future research.

6 Future Works
6.1 Integration of Tensor Fusion Network
SAL was originally developed for CNNs, but this study success-
fully adapted its use for an LSTM-based MSA model. However, the
complete integration of the Tensor Fusion Network (TFN) remains
unsatisfied. A significant challenge is that TFN generates memory-
intensive, high-dimensional tensors, which are difficult to manage.
A key area for future research would be to fully implement the
tensor fusion model, allowing the SAL-LSTM to utilize the output
tensor from tensor fusion as its input instead of relying on simple
concatenation.

6.2 Cross-Validation
There are several issues with cross-validation, one being every
dataset has a different output format. For instance, in the CMU-
MOSI dataset, sentiment outputs range from [-3,3], whereas MELD
categorizes outputs into seven distinct emotions [8]. To ensure accu-
rate cross-validation, these output formats need to be standardized
or adapted accordingly. Additionally, the input dimensionality of
corresponding modalities differs across datasets. Although MOSI
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and MOSEI are among the most compatible MSA datasets, they
still present challenges, such as incompatible numbers of input
dimensions for visual features extracted using OpenFace. This dis-
crepancy results in incompatible parameter sizes between models
trained on one dataset and tested on another, further complicating
effective cross-validation.
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