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ABSTRACT
This project focuses on developing a tool designed to automate
extracting and tracking required and recommended readings from
course syllabi at Earlham College. The tool utilizes zero-shot
named entity recognition (NER) to parse syllabi and accurately
identify textbook information, even when presented in varied and
incomplete formats. Extracted data is stored in a database and
further refined by web scraping to verify the availability of these
textbooks in the Lilly Library’s catalog. The tool distinguishes
between physical books and eBooks and updates the database
accordingly. By automating this process, the tool will enable the
Lilly Library to proactively ensure that essential textbooks are
available to students, potentially reducing their financial burden.
This project not only aims to benefit Earlham College but also
holds the potential to be adapted for use in other educational
institutions globally, promoting broader access to academic
resources.
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1 INTRODUCTION
Course syllabi are crucial for guiding students through their
academic coursework, detailing the required and recommended
readings that are essential for their success. However, at Earlham
College, there is currently no automated system to ensure that
these textbooks are available in the Lilly Library, leading to a
situation where students often need to purchase books that might
already be accessible through the college’s resources. The existing
process relies on professors to notify the library about necessary
books, but this approach is inconsistent and can result in gaps in
the library’s offerings.

This project addresses this issue by developing a tool that
automatically processes course syllabi to extract textbook
information, even when the data is presented in varied or
incomplete formats. The tool utilizes a pre-trained large language
model (LLM) to perform zero-shot NER to identify and compile the
necessary readings’ in-publication data into a database accurately.
It then uses web scraping technology to check the availability of
these books in the library’s catalog. By ensuring that all essential
readings are easily accessible, this tool aims to reduce the financial
burden on students and improve the efficiency of resource
management at Earlham College. Additionally, the framework of
this tool could be adapted for use in other academic institutions,

offering a scalable solution to enhance library services and support
student learning on a broader scale.

2 RELATEDWORK
2.1 Fine-tuning large language models
Large Language Models (LLMs) are sophisticated algorithms
capable of processing and generating human-like text by
leveraging vast datasets and advanced architectures, such as
transformers. Fine-tuning refers to adapting a pre-trained LLM to
specific tasks or domains by training it on a smaller, task-specific
dataset. This process is crucial as it enhances the performance and
accuracy, enabling it to understand specialized terminology and
context[Nav+23]. Several recent studies have explored different
approaches to fine-tuning LLMs for various applications.

Xu et al. emphasize the importance of effective and
generalizable fine-tuning strategies for LLMs in their work. They
propose methods to enhance the adaptability of LLMs, ensuring
that models can learn from limited domain-specific data while
maintaining their general language capabilities[Xu+21]. Li et al.
proposed a novel framework that aligns generated internal
knowledge with external knowledge through in-context learning
(ICL) to improve the accuracy and reliability of LLM outputs for
automated clinical data extraction[Li+24]. Their approach employs
a retriever to identify relevant units of internal or external
knowledge and a grader to evaluate the truthfulness and
helpfulness of the retrieved internal-knowledge rules to align and
update the knowledge bases.

Patil and Gudivada provide a comprehensive review of LLMs,
discussing various fine-tuning techniques tailored for specific
downstream tasks[PG24]. They highlight methods such as
discriminative fine-tuning, which adjusts model parameters based
on task-specific datasets, and gradual unfreezing, which allows for
selective training of model layers. Howard and Ruder introduced
another general fine-tuning method called Universal Language
Model Fine-tuning (ULMFiT) that achieves state-of-the-art
performance on a wide range of text classification tasks[HR18].
ULMFiT uses discriminative fine-tuning, slanted triangular
learning rates, and gradual unfreezing to adapt a language model
to a target task. The authors demonstrate the effectiveness of their
approach on six text classification tasks, achieving significant
improvements over previous methods.

2.2 Zero-shot named entity recognition (NER)
NER is another approach to extracting specific information from
large structured or unstructured text. NER is a natural language
processing (NLP) technique that can identify entities such as
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names of people, organizations, and locations, and numeric
expressions, including time, date, money, and percent
expressions[NS07]. Traditional methods of NER involve using
handcrafted rule-based algorithms, which are limited to a
predefined set of entity types. LLMs enhance the applicability of
NER by allowing open-type recognition. Now, models can identify
an arbitrary number of entity types based on natural language
instructions. However, this process can be cost-heavy due to the
computational resources required for large and complex models.

Zero-shot NER eliminates this cost by enabling models to
recognize entities they have not been explicitly trained on. It uses
the contextual understanding inherent in LLMs, which allows
them to infer entity types without requiring additional labeled
data[Zar+23]. In a zero-shot setting, smaller pre-trained models
like GLiNER can outperform larger LLMs, making them efficient
for resource-limited environments.

2.3 Web scraping
Web scraping is the process of extracting data from websites. The
process is divided into three key stages: fetching, extracting, and
transforming [Khd21]. The first step involves accessing the relevant
website using the HTTP protocol. Important data is then extracted
from the website using techniques such as regular expressions,
HTML parsing libraries, and XPath queries. Finally, the extracted
data is converted into a structured format for storage and further
processing.

Glez-Pena et al. demonstrated the usefulness and simplicity of
data scraping in addressing numerous practical needs, using a
biomedical data extraction scenario as an example [Gle+14]. The
authors highlighted the potential of web scraping in various
domains, paving the way for its wider adoption. To enhance the
efficiency of web scraping, researchers have explored advanced
techniques and tools. OXPath, an extension of XPath based on the
XML query language, enables the simulation of user interaction on
web pages and facilitates data extraction and manipulation.
Neumann et al. utilized OXPath to extract relevant papers from
Google Scholar and other digital libraries, demonstrating the tool’s
versatility in navigating through search results and accessing
specific content [NSS17].

2.4 Database interface
Traditional metadata formats like Machine Readable Cataloging
(MARC) are insufficient for capturing the complex bibliographic
relationships and semantics required for effective digital library
operations. Creating ontological metadata by extracting and
transforming MARC data allows advanced search, browsing, and
reasoning capabilities [WB98].

Weinstein uses a set of control files to map each selected MARC
field and code to one or more ontology concepts to convert binary
MARC data to text tagged with ontology concept [Wei98]. The
coded attributes and values from natural-language comments in
the tagged text are then extracted using a lexicon and
natural-language processing. The tagged text is then converted to
Loom assertions to use its reasoning capabilities to unify matching
instances and deduce relations between works. This process

converts the relationships that are implicit in the MARC data into
explicit relations that can be easily utilized by computers.

Data can also be directly extracted from textual documents and
added to ontological metadata. Monica et al. used Application
Programming Interfaces (APIs) to extract metadata on a corpus of
HTML documents, including file name, author, and creation date,
and effectively mapped them to ontology-based representations of
the textual documents. An algorithm called "Extract-Align" was
used to extract relevant terms from the HTML files and populate
the ontology [CC06]. The ontology-based representation enabled
improved organization, searching, and retrieval of the textual
documents.

Ontological metadata mapping can be used to automate the
database mediation process, where data is distributed across
multiple heterogeneous databases. Nadkarni et al. described a
rule-based framework for defining ontological metadata mapping
rules. These rules rely on elements of a global vocabulary, which
allows a query specified in one database to be automatically
translated and executed in other databases [MWN09].

2.5 User-centered UI/UX
User-centered design (UCD) is a method used to alleviate system
usage difficulties. It focuses on user habits and preferences in
designing User Interface and User Experience (UI/UX) [Ind22].
UCD follows four key principles: user focus, integrated design,
user testing, and interactive design [LR23].

Lumingkewas et al. applied UCD to improve the UI/UX of the
Academic Information System (AIS) at their university [LR23].
They began by signing interview agreements with developers and
experts, then identified the context of use through interviews. The
System Usability Scale (SUS) was used to evaluate the UI/UX via a
questionnaire of 330 student users. Based on the feedback, a design
solution was developed using Figma, and the SUS was repeated,
showing improved user satisfaction.

Similarly, Indah applied UCD to develop a library website for
the Faculty of Computer Science at Sriwijaya University [Ind22].
Librarians had struggled with managing the book collection
database using Excel, but the university required an accessible UI
for approval of an online application. By creating user personas
and gathering input through surveys and interviews, Indah
developed an application that met user needs. The SUS method
confirmed its success, and the application was approved for library
use.

3 DESIGN
The initial design and implementation of the tool will be tailored for
use in Lily Library in Earlham College. Earlham College stores all
course syllabi in a Box Folder that is widely available to all students,
faculty, and staff members on campus. Most of the files are in PDF
format, and this tool will only focus on that format. To cater to
Earlham College’s system, the initial step of gathering all the PDF
files from different directories into one directory is done manually
before using the tool. The gathered PDF files are then fed to the
tool which automatizes the next steps as detailed below.
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Figure 1: Data architecture diagram

The following data architecture diagram outlines a pipeline for
processing course syllabi to automatically extract and track
required and recommended readings. The workflow begins with
PDF syllabi files, from which prose is extracted and fed into a
pre-trained LLM that performs zero-shot NER to recognize and
extract reading information. The extracted reading information is
then formatted and stored in a central database. A web scraping
module queries the library catalog to verify availability, updating
the metadata with availability information. The final output is a
report detailing course readings and their availability status,
facilitating resource tracking for the library.

3.1 Fine-tuning LLM or using zero-shot NER for
extracting reading information

The platform will initiate the process by accessing course syllabi in
PDF format from the user. It will then extract prose from the PDF
files and save them in subsequent text files in another directory.

Depending on which method produces better results, the tool will
use either fine-tuning or zero-shot NER on pre-trained LLMs to
extract reading information.

3.1.1 Fine-tuning LLM. An appropriate pre-trained model and
tokenizer will be loaded and saved to utilize the fine-tuning
approach. The preprocessed text files will be fed to this model for
fine-tuning. The tokenizer will transform the text into a format the
model can understand. The pre-trained model will then be
fine-tuned on these tokenized inputs. The fine-tuned model will be
queried to extract required and recommended readings from the
text files it has been trained on. The model will process this query
and generate a file containing a list of readings for further
processing, which is elaborated in section 3.3.

3.1.2 Zero-shot NER. The zero-shot NER approach will load a
smaller pre-trained LLM. A list containing the labels of entities,
like ’textbooks’ and ’books’, and the extracted text from the text
files will be given to the model to predict the entities. The predicted
entities would be a list of all the required readings in the syllabi,
which will be used to populate the database explained in section
3.3.

3.2 web scraping to determine the availability
of the books

The program will extract in-publication data from the course
reading database and use the HTTP protocol to access the
user-specified library website. It will employ a Python library
called Selenium to search for book titles listed in the database,
parsing the search results to identify matches. The program
further verifies whether the books found on the website are
eBooks or physical books and if they align with the complete
publication information provided in the database. As it processes
each book, the program generates results indicating whether a
match has been found for each entry in the database.

3.3 Database interface

Figure 2: Database structure plan

Throughout the various stages of its operation, the program
repeatedly modifies data to prepare it for further processing, to
store it in specific formats, or to present it to the user in a
human-readable form.

The result generated by the fine-tuned LLM or zero-shot NER,
which contains the course reading descriptions, is first used to
populate a database of course readings. Given the variability in
how each syllabus lists its readings, many entries lack complete
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publication details. To address this, the program utilizes a Python
library, isbntools, to retrieve full in-publication data for the books.
This retrieved information is then stored in a structured,
well-formatted manner, as shown in figure 2.

The database is populated and properly formatted to ensure that
the necessary information for web scraping the library’s website is
easily accessible. After scraping is complete, the results indicating
the availability of each book are updated in the course readings
database, indicating whether it is an eBook or physical copy.

In the final step, the complete course reading database, now
containing both in-publication data and library availability, is
converted into a human-readable report. The report is formatted as
a spreadsheet, enabling librarians to review the course readings
and easily check whether each book is available in the library.

3.4 User-centered UI/UX
The UI will allow librarians to provide the directory containing the
course syllabi and a link to the website that they want the system
to scour.

To develop a UI that is easily navigable by most librarians, the
five-step UCD will be employed [LR23]. Librarians at Lilly Library
will be consulted to understand their needs. They will also be
surveyed with specified questions that will help design the UI of
the platform. The survey results will be used to design the
platform on Figma, which will then be shown to the primary users
of the platform. They will be surveyed again, where they will be
evaluating the usability of the system. The SUS method will be
used to evaluate the survey results to determine how suitable the
design is for librarians.

4 METHODS
4.1 Pre-processing
The initial step in preparing data for data extraction involves
extracting text from syllabi provided in PDF format. Using the
PDFReader function from Python’s PyPDF2 library, I developed a
script that systematically reads each PDF file provided by the user,
extracts its textual content, and saves the output as a plain text
(.txt) file. Each text file is stored in a designated directory,
simplifying access and organization for later processing stages.
This step ensures that the text is readily available for the
subsequent information extraction phase without needing to
access or process the original PDFs.

4.2 Fine-tuning
For the language model fine-tuning stage, I selected EleutherAI’s
GPT-J-6B, a pre-trained LLM known for its performance in natural
language understanding tasks. To streamline future fine-tuning
and avoid repeated downloads, the model and its associated
AutoTokenizer were downloaded and saved locally. This setup
allows for efficient reuse and quick access during multiple
fine-tuning sessions, ensuring that the model can be further
tailored to the project’s task of extracting reading lists from text
data. To check if the pre-trained model was correctly loaded, I gave
it random proses to see if it generated responses, which worked in
an appropriate way.

I ran a Python script that interacts with the model and reads the
preprocessed text files. The AutoTokenizer processed the text by
converting it into tokenized IDs, transforming it into a format the
model can understand. These tokenized IDs were then organized
into tensors and loaded into an iterable dataloader for training. The
pretrained GPT-J model was fine-tuned on these tokenized inputs
to adjust its parameters and optimize its performance for the target
task.

Once the model was fine-tuned, I gave it a query instructing
extraction of all required and recommended readings from the input
text files. The fine-tuned language model processed this query, and
I stored the generated response in a text file. The response text file
was evaluated to see if it correctly identified the course reading
requirements from the syllabi.

Evaluating the response generated by the fine-tuned model, I
saw that it did not list any required readings. I concluded that this
process would not be an appropriate method for data extraction
and resolved to use zero-shot NER, described in the next section.

4.3 Zero-shot NER
I chose a smaller pre-trained model for zero-shot NER called
GLiNER. This is a NER model capable of identifying any entity
type using a bidirectional transformer encoder (BERT-like). It
provides a practical alternative to traditional NER models, limited
to predefined entities and LLMs.

I developed a Python script that takes the directory containing
the syllabi text files and combines them into a single string before
splitting them into several smaller chunks of strings in a list. I
defined a list of labels that contains ’textbooks’ and ’books’. The
script then utilized GLiNER to perform zero-shot NER on the list
of strings using the labels I defined. This process predicted entities
from the strings based on the specified labels and generated a list
of labeled entities.

To check if this process produced accurate results, I ran the script
with one syllabus and printed out the entities list on a text file. I
then verified it by manually checking the syllabus for book titles.
This method produced better results than the fine-tuning method
so, the rest of the project was built with the result generated by
zero-shot NER.

4.4 Data modification
In this phase, I used the result produced by the previous step to
create a structured database of course reading materials. This
database serves as the foundation for performing web scraping on
the library’s website to verify the availability of the listed readings.

I utilized SQLite to create a database for structured management
and querying. I added functions to the Python script that performs
zero-shot NER that takes the labeled entities and stores them into
an SQLite3 database in the format outlined in figure 2. While
populating the database with the book titles from the labeled
entities, the script retrieves the ISBN of the books using a Python
library called isbntools and stores them in the database.

The script also utilizes a text file provided by the user, which
contains all course names, school-specific acronyms, or other
common names that might be mistaken for book titles by the NER
model, and filters them out while populating the database. At this
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stage, the database had the ’data extraction from syllabi’ portion
labeled in figure 2 mostly filled out for web scraping.

4.5 Web scraping
This step loops through every entry in the database, gets the book
title, and checks if they are available on the library website. The
tool takes the URL of the library website from the user used in this
part of the project.

I developed a Python script that takes the book titles from the
database and creates a dictionary with the titles as the keys. It
modifies the titles that match the format in which they appear
in the HTML file of the library website and stores them as the
subsequent values. The script then loops through the elements in
the dictionary and uses Selenium to search for the book titles on
the provided URL. It does so by attaching the names of the book
titles, replacing spaces with ’%20’, with the website URL and using
the WebDriver function in Selenium to navigate to the webpage. It
finds the class name in the HTML script that contains book titles
and compares it to the dictionary value it is looping through. If it
finds a match, the function returns True and otherwise False. This
return statement is used in the next step to record the result of the
book availability search.

4.6 Metadata population
In this step, the result from the web scraping process is taken and
used to populate the database’s availability column. If the returned
value of the web scraping function for an entry is True, the function
updates the availability value from ’N/A to ’yes,’ and if it is False, it
is updated to ’no.’

After this process, the database structure looks as shown in figure
3. The orange part represents the current structure of the database.
The blue part denotes things that could be added in future work,
which is elaborated on in section 7.

Figure 3: Database structure

4.7 Designing the UI and back-end
I used HTML and CSS files to develop the UI pages and used Flask
to host the webpage and link the front end to the back end. I used
Flask to write the Python app.py script, which starts the program
and used HTML and CSS to design the home page, as shown in
figure 4. On this page, the user uploads the syllabi from which they
want to extract information in PDF format and the acronym file in
text format. The user also provides the URL of the library website.
When the user clicks the submit button, the Flask script takes all

the PDF files and saves them in the upload/ directory in the back
end. This directory is then used to extract prose and convert the
PDF files into text files in another directory called extracted-files/
as described in section 4.1.

Figure 4: UI home page

Then, the script refers to all the other scripts I described in
previous sections to run the functions that perform zero-shot NER,
create and populate a database, and execute web scraping to
populate the availability of the books. After these steps, the script
runs a function that converts the SQLite database into an Excel
sheet and returns it to the user on the page shown in figure 5. The
user can then download the report, which looks like the sheet in
figure 6.

Figure 5: UI result page
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Figure 6: Output excel report

Finally, the script cleans up the upload/ and extracted-files/
directories and removes the database so that the tool is ready for
use again.

Since the UI design turned out to be simple, I skipped the step
of using SUS method to evaluate the usability of the tool.

5 RESULTS
I analyzed the tool’s functionality by providing one syllabus of a
course at Earlham College and a text file containing acronyms or
words common at this college. As the tool extracted information,
parsed the library website, and generated the report, I
simultaneously manually looked through the same syllabus, listed
all the textbook requirements, and checked the library website for
their availability. I compared the results of the two processes to
verify the tool’s reliability.

The tool correctly identified 50% of the textbooks mentioned in
the syllabus. Out of the 13 books that the tool identified, 69% of
them were accurate, as shown in the table below:

Category Value Description
Total books in
syllabus 18 Books listed in the syllabus.

Books identified
by the tool 13 Total books identified by the tool.

True Positives 9 Books correctly identified by the
tool.

False Positives 4 Books identified by the tool but not
in the syllabus.

False Negatives 9 Books in the syllabus but missed by
the tool.

Table 1: Performance of the tool.

On the other hand, the web scraping part of the tool generated
100% accurate results. The tool correctly identified the availability
of all the books in the syllabus on the library website.

Although the above analysis gives some representation of how
well the tool functions, testing the tool onmore syllabi andmanually
verifying the results would accurately illustrate the tool’s reliability.

6 CONCLUSION
This project aimed to develop a tool for automating the extraction
and tracking of textbook information from course syllabi at
Earlham College. By leveraging NLP techniques, integrating
zero-shot NER, and utilizing web scraping, the tool successfully
parsed syllabi, extracted relevant textbook data, checked the
availability of these textbooks in the library’s catalog, and
produced a human-readable report. Implementing an SQLite
database allowed for efficient storage and querying of extracted
data, while the web scraping module enabled real-time verification
of book availability. By improving the accuracy of the data
extraction component of the tool and making it adaptable for other
institutions, this tool can aid many educational institutions in
keeping track of reading requirements and their availability. The
institutions can use this information to make the textbooks they
have more available to the students and work towards buying or
reserving the unavailable textbooks to reduce the students’
financial liability.

7 FUTUREWORK
There are several areas where the tool can be improved to enhance
its functionality and adaptability. As highlighted in the results
section, the tool accurately identifies only 50% of textbooks listed
in the syllabus and identifies 31% false positive books. Additionally,
the syllabi data extraction process currently focuses on identifying
textbook names but cannot associate them with specific authors
or editions. This limitation may lead to inaccurate or incomplete
results. Future improvements could incorporate NLP techniques to
improve the accuracy of book identification and to extract complete
in-publication information.

The web scraping component currently verifies the availability
of books but does not differentiate between eBooks and physical
copies. Adding functionality to distinguish between these formats
will provide more useful availability information for users. This
component of the tool is also currently designed specifically for
the Earlham College library website. To broaden the tool’s
applicability, future iterations should include the ability to adapt to
various library websites by supporting dynamic web scraping
configurations.

By addressing these areas, the tool can become more reliable
and adaptable, ultimately providing a more comprehensive solution
for tracking and managing course reading materials across diverse
educational institutions.
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