
Network Monitoring using Machine Learning
Charles Bowen-Rayner

∗

cdbowen21@earlham.edu

Earlham College

Richmond, Indiana, USA

ABSTRACT
Machine learning is gaining prominence for network monitoring,

yet current tools are often complex to understand and use. This

proposal attempts to address this by developing an algorithm for

network anomaly detection using libpcap and the random forest

algorithm. This approach provides real-time anomaly detection by

analyzing past network traffic from real-life datasets and employing

machine learning techniques. Through various tested methods,

the effectiveness of identifying various network anomalies will

be analyzed. This study will highlight the potential of integrating

libpcap and machine learning for scalable and adaptable network

security solutions, contributing to improved threat detection in

modern computing environments.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
Machine Learning, Random Forest, libpcap, Network Monitoring,

Packet Capture, Packet Analysis

1 INTRODUCTION
In the field of computer networking and cybersecurity, robust mon-

itoring tools are vital. These tools are key in maintaining network

integrity by continuously scanning for anomalies, potential threats,

and performance bottlenecks. Challenges such as evolving attack

vectors, increasing network traffic volumes, and the need for real-

time analysis require innovative solutions to enhance the effec-

tiveness of network monitoring capabilities. In response to these

challenges, the integration of machine learning techniques into

network monitoring has emerged as a method for enhancing detec-

tion capabilities and improving response times. Machine learning,

with its ability to analyze vast amounts of data and discern complex

patterns, offers a new paradigm for network monitoring that is

adaptable and dynamic. Central to the task of network monitoring

is the capture and analysis of network traffic data. Here, libpcap

stands out as a foundational library, providing powerful capabilities

for capturing packets traversing the network interface. Its versatil-

ity and efficiency make it a preferred choice for network monitoring

applications.

In this paper, I discuss the implementation of a tool designed

to capture and analyze network traffic for anomaly detection. The

tool utilizes packet capture techniques facilitated by libpcap to

collect essential network traffic data, including source and desti-

nation IP addresses, ports, protocols, and payload data. Building

upon this data collection framework, the implementation harnesses

machine learning techniques to analyze captured network traffic

and identify anomalies indicative of security threats. The random

forest algorithm serves as the core of the detection model. The CIC-

IDS2017 dataset—which contains real-world attack scenarios—was

used to train the model. To address the inherent class imbalance

within the dataset, I applied Synthetic Minority Oversampling Tech-

nique (SMOTE) [1] during preprocessing, ensuring the model is

exposed to a balanced representation of both normal and anoma-

lous network traffic. Additionally, class weighting was incorporated

to further mitigate any residual imbalance. For feature selection,

I utilized Pearson correlation matrix analysis and Recursive Fea-

ture Elimination (RFE) to identify the most relevant features from

the dataset. This step significantly enhanced the model’s efficiency

by removing redundant or less significant features, optimizing its

ability to detect malicious activity accurately. Once trained, the ran-

dom forest model is integrated into a live packet-capturing system,

where the tool continuously monitors network activity in real-time.

The captured packets, stored in .pcap files, are fed into the detec-

tion system, which analyzes the traffic using the pre-trained model.

Upon identifying any anomalous or malicious network behavior,

the system immediately alerts network administrators, ensuring

timely responses to potential security threats.

2 DATASET: CICIDS-2017
The CICIDS-2017 dataset [6] is a comprehensive and widely recog-

nized dataset designed for evaluating intrusion detection systems

(IDS) in the context of network security. Developed by the Canadian

Institute for Cybersecurity (CIC), this dataset replicates realistic

traffic scenarios through a combination of both benign and mali-

cious network activity. The dataset was captured over five days in a

controlled environment that closely mirrors a real-world corporate

network.

The CICIDS-2017 dataset contains a wide variety of attack types

categorized into 14 attack methods:

• DDoS: Floods a system with traffic from multiple sources to

overwhelm it.

• DoS Hulk: Sends massive traffic to exhaust server resources.

• DoS GoldenEye: Floods a server with HTTP requests.

• DoS slowloris: Opens many slow connections to exhaust

server resources.

• DoS Slowhttptest: Sends incomplete or slowHTTP requests

to keep server resources busy.

• PortScan: Probes for open ports to find potential vulnera-

bilities.

• FTP-Patator: Brute force attack on FTP servers by guessing

login credentials.

• SSH-Patator: Brute force attack on SSH services by guessing

login credentials.

• Bot: Infects machines to create a botnet for large-scale at-

tacks.

1



Epic Expo, April, 2024, Earlham College Charles Bowen-Rayner

• Web Attack — Brute Force: Attempts to guess login cre-

dentials on a web application.

• Web Attack — XSS: Injects malicious scripts into web pages

viewed by users.

• Web Attack — SQL Injection: Exploits vulnerabilities in
SQL queries to access or manipulate databases.

• Infiltration: Gains unauthorized access to internal networks.
• Heartbleed: Exploits a vulnerability in OpenSSL to steal

sensitive data.

A common approach when working with this dataset is to group

some of the categories to help reduce the class imbalance problem.

For this project, the 14 categories were grouped to a subset of 8:

• DDoS: DDoS attack traffic.

• DoS: This includes all Denial of Service attacks such as DoS

Hulk, DoS GoldenEye, DoS slowloris, and DoS Slowhttptest.

• Port Scan: Traffic resulting from port scanning activities.

• Brute Force: This includes both FTP-Patator and SSH-Patator
attacks.

• Bot: Malicious traffic associated with botnet activity.

• Web Attack: This category includes Web Attack — Brute

Force, Web Attack — XSS, and Web Attack — SQL Injection.

• Infiltration: Malicious traffic that results from network in-

filtration attempts.

• Heartbleed: Traffic related to the Heartbleed vulnerability.

In addition to malicious activity, the dataset also includes normal

(benign) traffic, making it suitable for binary as well as multi-class

classification tasks. Each network flow is represented by 80 network

traffic features that capture detailed information about the packet

headers, payload size, and other flow-level characteristics. This

allows for in-depth analysis and identification of subtle differences

between malicious and normal behavior.

3 METHODS
In developing this network monitoring tool, I employed a hybrid ap-

proach combining machine learning-based anomaly detection with

live network traffic capture for real-time monitoring. The methodol-

ogy is divided into three major components: model training, packet

capture, and real-time classification. Figure 1 illustrates the over-

all architecture of this network monitoring tool, highlighting the

data flow from offline training using the CICIDS-2017 dataset to

real-time detection.

3.1 Preprocessing with CICIDS-2017
Effective preprocessing of the CICIDS-2017 dataset was essential

for ensuring data quality and enhancing model performance. The

following steps were undertaken:

3.1.1 Data Cleaning. First, whitespace between column names

was removed to standardize the dataset structure. This step facili-

tated subsequent data manipulation and prevented issues related

to inconsistent column references. Next, duplicate records were

identified and eliminated to avoid overfitting and ensure that each

instance in the dataset contributed unique information to the learn-

ing process. Furthermore, the columns representing Flow Bytes
and Flow Packets contained infinity values, which could adversely

affect the model’s training. These infinity values were replaced

with the median values of their respective columns, ensuring that

data distributions were maintained while mitigating the impact of

outliers.

3.1.2 Label Reduction. The dataset originally contained 15 distinct
class labels, representing various types of network attacks and be-

nign traffic. To improve the tractability of the classification task,

these labels were consolidated into 9 broader categories. This reduc-

tion in class labels simplified the learning problem while retaining

the essential distinctions between major attack types.

3.1.3 Removal of Low-Variance Features. Columns with only one

unique value—such as session identifiers and other features offering

little predictive power-were removed from the dataset. Features

with low variance often contribute little to classification tasks and

can introduce noise, so their exclusion enhances the model’s focus

on relevant data.

3.1.4 Initial Feature Selection. To address multicollinearity in the

dataset, a Pearson correlation matrix was used to identify and re-

move highly correlated features. A threshold of 0.8 was applied to

the correlation values, meaning that any pair of features with a

correlation higher than this threshold were considered too similar,

and one was removed. By focusing on the upper triangular portion

of the correlation matrix, this process efficiently identified features

to be dropped. After applying this method, the number of features

was reduced to 32, ensuring that only those features providing dis-

tinct and non-redundant information were retained. This reduction

in feature space contributed to improving the model’s performance

by removing unnecessary complexity and focusing on the most

relevant information for classification.

3.1.5 Class Imbalance Handling. Class imbalance is a known chal-

lenge with this dataset, as certain attack types are underrepresented.

To mitigate this issue, two techniques were applied:

(1) SMOTE (Synthetic Minority Oversampling Technique) was

used to generate synthetic instances of minority class sam-

ples, ensuring a more balanced dataset for model training.

(2) Class weighting was also employed during training to as-

sign higher misclassification penalties to minority classes.

This technique complemented SMOTE by emphasizing the

importance of correctly classifying underrepresented attack

types, thus preventing the model from being biased towards

majority classes.

3.1.6 Recursive Feature Elimination (RFE). After addressing the

class imbalance, Recursive Feature Elimination (RFE) was applied

for the final feature selection. RFE recursively removed irrelevant

features by training a base model and discarding the least impor-

tant predictors in each iteration. This process was repeated until

an optimal subset of features was identified. By reducing dimen-

sionality, RFE enhanced the efficiency of the classification model

and minimized overfitting. Figure 2 illustrates this RFE process.

Through this preprocessing pipeline, the dataset was transformed

into a clean and balanced format, optimized for training a random

forest classifier. Each preprocessing step was designed to ensure

that the model could generalize effectively while maintaining high

accuracy across all classes [1].

2



Network Monitoring using Machine Learning Epic Expo, April, 2024, Earlham College

Figure 1: Data architecture of the network monitoring tool, highlighting the flow from training to real-time classification.

3.2 Model Training
To determine the optimal number of features to include in the

model, the ranked features from RFE were tested across various

sizes, specifically evaluating the impact on model performance. Us-

ing mean cross-validation accuracy as the evaluation metric, it was

found that 10 features yielded the best results with the minimum

number of features, providing a balance between model complexity

and predictive accuracy. The subset of 10 crucial features identified

for model training were: Bwd Header Length, Destination Port, To-
tal Length of Fwd Packets, Bwd Packet Length Max, Init Win bytes
backward, Fwd Packet Length Max, Total Fwd Packets, Flow Duration,
Flow IAT Std, and Init Win bytes forward.

With the selected features established, hyperparameter tuning

for the Random Forest classifier was conducted. Two hyperparame-

ters were considered:

• Max depth: The maximum depth of the decision trees,

which controls model complexity and the risk of overfitting.

Figure 3.

• N estimators: The number of trees in the forest, impacts

both model accuracy and computation time. Figure 4.

A loop was implemented to iterate over different combinations

of these hyperparameters, with mean cross-validation accuracy

used to evaluate each configuration. The hyperparameters were se-

lected at a point where the accuracy began to plateau. This plateau

suggested that additional increases would yield diminishing re-

turns in terms of model performance, prompting the selection of

the hyperparameter values just before this point to achieve opti-

mal performance without unnecessary complexity. Therefore, max

depth showed a value of 8 at this point and at 14 for n estimators.

Once these hyperparameters were determined, the Random Forest

model was trained on the selected features, and the trained model

was saved within a directory to be called upon for live testing.

3.3 Live Packet Capture
To enable real-time network monitoring, I implemented live packet

capture using libpcap in C [9]. Libpcap allows for low-level net-

work traffic capture directly from the network interface, and in

this project, it was used to capture traffic between two nodes on

Figure 2: Visualization of recursive feature selection on
trained model

Figure 3: Visualization of max depth fine-tuning process

Figure 4: Visualization of n estimators fine-tuning process

3



Epic Expo, April, 2024, Earlham College Charles Bowen-Rayner

my Earlham College’s network. I utilized multiple nodes from a

CS cluster, with one acting as a server and the others generating a

variety of malicious and benign traffic.

The packet capture tool, developed using libpcap, intercepted

and logged the incoming traffic on the destination node using flow-

based monitoring with specific timeouts in line with the CICIDS-

2017 dataset method. For TCP flows, the capture process was ter-

minated either upon receiving a FIN packet or after 600 seconds

of inactivity. For UDP flows, I set a 600-second timeout. The cap-

tured packets were aggregated into flows by utilizing 5 metrics:

source IP, destination IP, source port, destination port and protocol;

which were then saved in a CSV file for analysis. The flows were

comprised of the features that were selected during the feature

selection process in model training. These key features, along with

their descriptions, are as follows:

• Bwd_Header_Length – The total number of header bytes

in the backward direction.

• Destination_Port – The destination port number, identify-

ing the service or application.

• Total_Length_of_Fwd_Packets – The total size of packets

sent in the forward direction.

• Bwd_Packet_Length_Max – The maximum size of any

backward packet.

• Init_Win_bytes_backward – The initial TCP window size

in the backward direction.

• Fwd_Packet_Length_Max – The maximum size of any

forward packet.

• Total_Fwd_Packets – The total number of forward packets.

• Flow_Duration – The total duration of the flow.

• Flow_IAT_Std – The standard deviation of the inter-arrival

time between packets.

This method of converting packets into flows and storing them

in a CSV format ensured that the real-time data could be sent to

the machine learning model in the appropriate input format. Once

stored in the CSV file, the flow data was sent to the pre-trained

model, which analyzed the data in real-time to detect potential

threats.

3.4 Real-Time Response
To achieve real-time detection of network anomalies, I implemented

a daemon process that operates continuously in the background.

This daemon is responsible for fetching the pre-trained machine

learning model and the saved flow data stored in the CSV files.

By utilizing this architecture, the system can dynamically respond

to live network traffic and assess its behavior against the trained

model. The daemon begins by loading the saved random forest

classifier model into memory, ensuring that it is ready to make

predictions. Simultaneously, the daemon retrieves the latest flow

data from the CSV files generated during the packet capture phase.

This setup allows for immediate access to the most recent network

behavior data.

During the testing phase, the daemon feeds the new flow data

into the trained random forest model. This process involves pre-

processing the flow data to match the format used during training,

ensuring consistency in feature representation. The model then

analyzes the incoming flows and outputs predictions, identifying

whether the traffic is normal or indicative of an anomaly. Upon de-

tecting an anomalous pattern, the daemon triggers an alert system

that notifies network administrators of potential security threats

in real-time. Figure 5.

Figure 5: Email alert generated using Python smtplib Module

In summary, the integration of a daemon process for real-time

detection enhances the effectiveness of the network monitoring

system by ensuring continuous analysis of live traffic against the

pre-trained model. This proactive approach enables rapid response

to possible intrusions or abnormal behaviors within the network,

facilitating timely interventions to mitigate risks.

4 RESULTS
4.1 Model Training
The Random Forest model was trained using the CICIDS-2017

dataset, focusing on the 10 most relevant features selected through

Pearson Correlation Matrix and Recursive Feature Elimination

(RFE). These features were chosen as they provided optimal classi-

fication accuracy, aligning closely with findings in prior research

outlined in Table 3 of [7], which highlighted the importance of

attributes such as flow duration, packet length statistics, and inter-

arrival times for intrusion detection. My results reaffirm the signifi-

cance of these features, demonstrating that reducing the dataset to

this subset maintains high accuracy while improving computational

efficiency.

4.2 Packet Capture
During the packet capture stage, a dynamic memory allocation

strategy was employed to store network flows. By starting with

an initial chunk size of 1 and doubling the allocation as needed, I

effectively prevented memory exhaustion while maintaining perfor-

mance. This approach proved superior to static allocation, especially

under heavy traffic conditions, as it allowed for efficient utilization

of memory resources and seamless handling of large volumes of

flow data. This method ensured the stability and reliability of the

packet capture process, even during prolonged network monitoring

sessions.

4.3 Live Classification
During live classification, the model was tested using SSH brute

force attacks, port scans, and web-SQL injection attacks. The model

demonstrated a mixed ability to accurately classify these attacks.

While it successfully identified the majority of brute force attacks, it

struggled with port scan and web-SQL injection attacks. A notable

issue was observed during port scans that targeted port 22, as

these were sometimes misclassified as brute force attacks due to

overlapping features between the two attack types. Furthermore,

misclassifications were amplified by the model identifying multiple

traffic types using the same features within the 10 that were selected,

4



Network Monitoring using Machine Learning Epic Expo, April, 2024, Earlham College

for example, Brute Force, Bot, and Infiltration traffic, leading to

difficulties in accurately distinguishing between them.

These limitations highlight the challenges in accurately identify-

ing certain attack types with individual packet-level analysis. For

instance, the subtle and distributed nature of web-SQL injection

traffic often lacks distinct characteristics that the model can lever-

age. Similarly, port scans involving short-duration packets or low

rates of connection attempts can resemble benign traffic patterns.

To address these challenges, the tool must incorporate higher-

level traffic behavior analysis. By aggregating traffic over time and

monitoring for repeated connection attempts to various ports or

anomalous patterns (such as a sustained high volume of traffic from

a single IP address), the system can detect behaviors consistent

with port scans or SQL injection attacks. Enhancing the tool with

such behavioral analysis will improve its ability to detect a broader

range of attacks and ensure timely notifications to administrators,

increasing its effectiveness in real-world scenarios.

5 FUTUREWORK
Future work will focus on enhancing the tool to better identify

specific attack patterns such as port scans and Denial of Service

(DoS) attacks, as the current model struggled with these. Port scans,

characterized by a high volume of connection attempts to various

ports, and DoS attacks, which involve repetitive traffic targeting

a specific service or resource, require a more robust analysis of

aggregated traffic behavior. By implementing these capabilities, the

packet capture system will be able to detect such behaviors in real-

time and notify an administrator, making the tool more effective in

handling practical network threats.

To address the observed misclassification issue, I aim to investi-

gate whether increasing the number of features or removing the

Recursive Feature Elimination (RFE) process could enhance the

model’s ability to distinguish between traffic types. By incorpo-

rating all non-highly correlated features, the model may gain ad-

ditional discriminatory power, potentially reducing overlap and

improving classification accuracy for challenging cases such as

distinguishing between port scans and brute force attacks. Future

experiments will evaluate the trade-offs between feature set size,

model complexity, and performance.

Additionally, testing will be expanded to include live data from

external networks beyond the currently monitored local network.

This approach will provide a more comprehensive evaluation of the

tool’s performance across diverse network environments, validating

its effectiveness and scalability. By leveraging insights from this

expanded testing and fine-tuning, the tool will be better equipped

to detect and classify malicious traffic in real-world scenarios.

REFERENCES
[1] Mustafa Al Lail, Alejandro Garcia, and Saul Olivo. 2023. Machine learning for

network intrusion detectionmdash;a comparative study. Future Internet, 15, 7.
doi: 10.3390/fi15070243.

[2] K.G. Anagnostakis, S. Ioannidis, S. Miltchev, M. Greenwald, J.M. Smith, and J.

Ioannidis. 2002. Efficient packet monitoring for network management. In NOMS
2002. IEEE/IFIP Network Operations and Management Symposium. ’ Management
Solutions for the New Communications World’(Cat. No.02CH37327), 423–436. doi:
10.1109/NOMS.2002.1015599.

[3] Ibrahim Ghafir, Václav Přenosil, Jakub Svoboda, and Mohammad Hammoudeh.

2016. A survey on network security monitoring systems. 2016 IEEE 4th Interna-
tional Conference on Future Internet of Things and Cloud Workshops (FiCloudW),
77–82. https://api.semanticscholar.org/CorpusID:15021357.

[4] Azidine Guezzaz, Ahmed Asimi, Yassine Sadqi, Younes Asimi, and Zakariae

Tbatou. 2016. A new hybrid network sniffer model based on pcap language and

sockets (pcapsocks). International Journal of Advanced Computer Science and
Applications, 7, 2.

[5] V. Mohan, Y. R. Janardhan Reddy, and K. Kalpana. 2011. Active and passive

network measurements: a survey. In https://api.semanticscholar.org/CorpusID:

16484529.

[6] Shailesh Singh Panwar, Y. P. Raiwani, and Lokesh Singh Panwar. 2022. An intru-

sion detection model for cicids-2017 dataset using machine learning algorithms.

In 2022 International Conference on Advances in Computing, Communication and
Materials (ICACCM), 1–10. doi: 10.1109/ICACCM56405.2022.10009400.

[7] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward

generating a new intrusion detection dataset and intrusion traffic characteri-

zation. In International Conference on Information Systems Security and Privacy.
https://api.semanticscholar.org/CorpusID:4707749.

[8] Jakub Svoboda, Ibrahim Ghafir, Vaclav Prenosil, et al. 2015. Network monitoring

approaches: an overview. Int J Adv Comput Netw Secur, 5, 2, 88–93.
[9] tcpdump. 2017. Tcpdump/libpcap public repository. Tcpdump.org. doi: https://w

ww.tcpdump.org/.

5

https://doi.org/10.3390/fi15070243
https://doi.org/10.1109/NOMS.2002.1015599
https://api.semanticscholar.org/CorpusID:15021357
https://api.semanticscholar.org/CorpusID:16484529
https://api.semanticscholar.org/CorpusID:16484529
https://doi.org/10.1109/ICACCM56405.2022.10009400
https://api.semanticscholar.org/CorpusID:4707749
https://doi.org/https://www.tcpdump.org/
https://doi.org/https://www.tcpdump.org/

	Abstract
	1 Introduction
	2 Dataset: CICIDS-2017
	3 Methods
	3.1 Preprocessing with CICIDS-2017
	3.2 Model Training
	3.3 Live Packet Capture
	3.4 Real-Time Response

	4 Results
	4.1 Model Training
	4.2 Packet Capture
	4.3 Live Classification

	5 Future Work

