
Enhancing the Detection of Alzheimer’s Disease Using Magnetic
Resonance Imaging Data through Convolutional Neural Networks
JUIHSUAN WONG, Earlham College, USA

Alzheimer’s disease (AD) is a significant global health challenge. This study
harnesses convolutional neural networks (CNNs) to improve the accuracy
of Alzheimer’s detection using magnetic resonance imaging (MRI) data. By
optimizing CNNs, we aim to refine diagnostic processes and contribute to
early and accurate AD diagnosis.

Additional Key Words and Phrases: Alzheimer’s disease, MRI, convolutional
neural networks, deep learning, machine learning

1 Introduction
Alzheimer’s disease (AD) is one of the most significant global health
challenges of our age, affecting millions worldwide. As a progres-
sive neurodegenerative disorder, AD manifests through cognitive
decline and memory loss, severely impacting the quality of life of
patients and their families. The early and accurate diagnosis of AD
is not merely a medical necessity; it is critical for effective treatment
planning and improving patient outcomes. In this context, magnetic
resonance imaging (MRI) plays an essential role. MRI scans provide
detailed images of the brain, enabling the detection of early signs
of AD before severe symptoms appear. These early interventions
can potentially slow the progression of the disease, highlighting the
importance of precision in the diagnostic process [6].
This project seeks to harness the power of convolutional neural

networks (CNNs), a sophisticated deep learning technique, to en-
hance the precision of AD detection using MRI data [3, 7]. Despite
the advancements in machine learning (ML) and its application in
medical imaging, challenges remain in achieving the high accuracy
needed for clinical use. By applying CNNs, known for their effective-
ness in image recognition and classification [2], this project aims
to refine diagnostic processes. We will explore how CNNs can be
optimized to better identify the characteristic patterns of AD in
brain images, thus supporting earlier and more accurate diagnoses
than currently possible. This initiative not only aims to leverage
cutting-edge technology but also to contribute significantly to the
field by improving diagnostic accuracy, which is paramount for the
timely and effective treatment of AD.

2 Background

2.1 Current state of AD detection
MRI plays a crucial role in diagnosing AD, allowing for the identifi-
cation of characteristic brain patterns linked to the disease. While
traditional diagnostic methods rely on visible symptoms and MRI
imaging, the integration of ML offers a path to earlier and more
accurate diagnoses. Recent advancements in ML and deep learning
have significantly improved the accuracy of AD classification from
MRI data, addressing some limitations of earlier techniques such
as subjectivity in image interpretation and variability in diagnostic
criteria.
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2.2 Machine learning in medical imaging
Various ML algorithms have shown promise in enhancing AD de-
tection through MRI. Support vector machines (SVMs) [5], CNNs,
decision trees [1], and ensemble methods like random forests are
particularly noted for their effectiveness in classifying complex
patterns in MRI data. These algorithms are capable of processing
high-dimensional data and extracting subtle features that may not
be discernible through traditional analysis. However, challenges
remain, including the need for substantial training data, compu-
tational intensity, and the risk of overfitting, which necessitates
careful tuning and validation of the models.

2.3 Related works
Studies have demonstrated the superior performance of deep learn-
ing algorithms, particularly CNNs, in detecting AD by analyzing
MRI scans. These models excel at capturing intricate spatial hi-
erarchies in imaging data, leading to high classification accuracy.
Notable research has explored various architectures and hybrid mod-
els that combine the strengths of multiple learning algorithms to
further enhance diagnostic accuracy. Despite these advancements,
the field continues to face challenges related to the generalizabil-
ity of models across different populations and imaging protocols,
highlighting an area for ongoing research and development [4, 8].

3 Methodology

3.1 Data collection and preprocessing
Our study leverages MRI images from the Alzheimer’s Dataset (4
Class of Images) from Kaggle, organized into binary classification:

• Healthy: Non-Demented
• Unhealthy: Very Mild, Mild, and Moderate Demented

We divided the data into training and testing sets, ensuring con-
sistent partitioning for reproducibility across all models. We used
ImageDataGenerator to load images, with the following prepro-
cessing steps:

• Rescaling: Each pixel intensity value was normalized to
the range [0, 1] by dividing by 255.

• Image resizing: All images were resized to 224×224 pixels
to match the input size required by models like VGG16 and
EfficientNet.

• Batch processing: The data was processed in batches of 32
images to optimize memory usage during training.

• Consistent shuffling: Shuffling was disabled to maintain
consistent ordering across models, particularly for machine
learning algorithms like SVM and Random Forest.

1 train_datagen = ImageDataGenerator(rescale =1./255)

2 test_datagen = ImageDataGenerator(rescale =1./255)

3

4 train_generator = train_datagen.flow_from_directory(

5 directory=train_dir ,
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Table 1. Pros and Cons of Various Machine Learning Algorithms

Algorithm Pros Cons

SVM High accuracy with clear margin separation; effective in high-
dimensional spaces

Requires careful parameter tuning; may perform poorly with
noisy datasets

CNNs Exceptional at capturing spatial hierarchies in image data; auto-
matically detects important features

Requires large amounts of labeled data; computationally inten-
sive

Random
Forest

Handles high-dimensional data well; provides insights into fea-
ture importance

Can be computationally intensive; risk of overfitting without
proper tuning

Decision
Trees

Can handle both numerical and categorical data; easy to interpret Prone to overfitting with complex trees; may not capture complex
relationships effectively

Gradient
Boosting

High accuracy by combining multiple weak models; flexible,
optimizing different loss functions

Prone to overfitting if not controlled; time-consuming to train

Naive Bayes Fast and efficient for large datasets; performs well with indepen-
dent features

Assumes feature independence, reducing accuracy in complex
scenarios; struggles with mixed data types

Linear
Regression

Simple to implement and understand; useful for analyzing feature
relationships

Assumes linear relationships, unsuitable for complex patterns;
sensitive to outliers

XGBoost High performance and scalability; supports handling missing data Complex to tune due to many hyperparameters; may overfit with
deep trees

Voting
Classifier

Improves accuracy by combining multiple models; reduces over-
fitting risk

Results in a complex, less interpretable model; requires careful
model selection

6 target_size =(224, 224),

7 batch_size =32,

8 class_mode='categorical ',

9 shuffle=False

10 )

11

12 test_generator = test_datagen.flow_from_directory(

13 directory=test_dir ,

14 target_size =(224, 224),

15 batch_size =32,

16 class_mode='categorical ',

17 shuffle=False

18 )

Listing 1. Data preprocessing with ImageDataGenerator

3.2 Models implemented
We experimented with a range of models to determine the best-
performing one for this binary classification task. Each model was
evaluated using accuracy, precision, recall, and F1-score to ensure a
balanced assessment of both healthy and unhealthy predictions.

3.2.1 Logistic regression. We flattened the input images and trained
a logistic regression model using the maximum iteration limit of
1000 to ensure convergence.

1 lr_model = LogisticRegression(max_iter =1000)

2 lr_model.fit(X_train_flat , y_train.argmax(axis =1))

Listing 2. Training logistic regression model

3.2.2 Random forest (RF). A Random Forest Classifier with 100
trees was used to capture non-linear patterns. The model provided
insights into feature importance, which can be helpful for inter-
pretability.

1 rf_model = RandomForestClassifier(n_estimators =100)

2 rf_model.fit(X_train_flat , y_train.argmax(axis =1))

Listing 3. Training Random Forest model

3.2.3 Support vector machine (SVM). We used a linear kernel SVM
to classify MRI features. This approach works well for binary classi-
fication tasks but required careful tuning to avoid overfitting.

1 svm_model = SVC(kernel='linear ')

2 svm_model.fit(X_train_flat , y_train.argmax(axis =1))

Listing 4. Training SVM model

3.2.4 Deep learning architectures. Several pre-trained models were
fine-tuned on the MRI dataset, including VGG16, VGG19, Efficient-
NetB0, ResNet50, ResNet101, InceptionV3, and DenseNet121. The
base models were loaded with ImageNet weights, and additional
layers were added to adapt them for binary classification.

1 vgg16 = VGG16(weights='imagenet ', include_top=False ,

input_shape =(224, 224, 3))

2 vgg16_model = create_model(vgg16 , train_generator.

num_classes)

Listing 5. Fine-tuning VGG16 model

Each model used the Adam optimizer with a learning rate of 1 ×
10−4 and binary cross-entropy loss. Early stoppingwas implemented
to prevent overfitting by monitoring the validation loss.

4 Preliminary design
Our system architecture is designed as a seamless, end-to-end pipeline
for classifying AD from MRI scans, as illustrated in Figure 1. The
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Fig. 1. The architecture of the convolutional neural network used in this study.

process begins withMRI scans being fed into the system, categorized
into four distinct classes: mild demented, moderate demented, very
mild demented, and non-demented. These images then undergo
essential preprocessing steps, where normalization adjusts pixel
intensity values, and resizing ensures uniform dimensions across
all inputs.

The preprocessed images are subsequently fed into a CNN model,
which acts as the core of the system. The CNN’s feature extractor
identifies and extracts critical patterns from the MRI scans, which
are vital for distinguishing between the different stages of AD. The
extracted features are then analyzed by the detection component,
enabling the model to predict the appropriate category for each
input.
This architecture not only handles the training phase but also

supports testing, where the model’s predictions are evaluated for
accuracy and generalizability. The model’s performance is rigor-
ously assessed to ensure that it can reliably classify new, unseen
data, making it a powerful tool for early diagnosis and treatment
planning of AD.

Training and validation of the model utilize cross-validation tech-
niques to fine-tune parameters and optimize generalization. The
integration of this system into existing diagnostic workflows en-
hances current capabilities without requiring significant modifica-
tions, thereby providing a reliable and accurate disease classification
system. Python, with the support of TensorFlow and Keras, serves
as the foundation for developing and training this model, ensuring
robust performance and adaptability in clinical settings.

5 Evaluation plan
The plan for evaluating themodel designed to recognize AD includes
a simple and flexible approach. We aim to check whether our model
works well and can be trusted for practical use.

5.1 Metrics
In assessing the performance of our CNN model, the primary metric
is its accuracy—specifically, its ability to correctly classify MRI scans
in terms of whether they suggest the presence of AD. Accuracy is
determined by comparing the model’s predictions against known
outcomes in the test set. This metric is crucial for evaluating the
reliability of the model in clinical settings, where high precision is
necessary to support medical decisions. Additionally, we may con-
sider other performance metrics such as sensitivity and specificity,
which provide deeper insight into the model’s diagnostic capabili-
ties, particularly its ability to detect true positive cases of AD and
correctly identify negatives where the disease is not present.

5.2 Testing protocol
To ensure the robustness and generalizability of our CNNmodel, we
employ a standard three-way split in our dataset: training, validation,
and testing. The training set is used to fit the model parameters,
while the validation set helps in tuning and selecting the best model
parameters to prevent overfitting. The distinct testing phase involves
evaluating the finalized model on a completely separate set of data
that it has never encountered during the training or validation
phases. This step is critical as it simulates real-world application,
providing an unbiased evaluation of the model’s effectiveness in
new and varied clinical scenarios.

6 Risk analysis
With any ML project, numerous risks must be carefully managed
to ensure the integrity and utility of the developed models. Among
the technical challenges, one significant concern is the risk of over-
fitting—where the model learns the training data too well and fails
to generalize to new, unseen data. To mitigate this risk, we employ
techniques such as cross-validation and regularization during the
model training phase.
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Another technical concern involves biases that may arise from
the data itself or the model’s processing capabilities. Data bias can
occur due to the way data is collected, processed, or selected for
training. Since our dataset is sourced from publicly available data
on Kaggle, it may not comprehensively represent all demographics
or stages of AD, potentially leading to biased predictions against
underrepresented groups. We aim to address this by further enrich-
ing our dataset with more diverse data sources in future iterations
of the project.
Model bias is another area of concern, particularly with deep

learning models like CNNs, which are inherently complex and often
operate as "black boxes." There is a risk that the model might develop
hidden biases against certain patterns or features in the data, which
might not be immediately apparent. Efforts to increase the trans-
parency and interpretability of the model, such as implementing
model explanation tools or techniques like SHAP (SHapley Additive
exPlanations) values or LIME (Local Interpretable Model-agnostic
Explanations), are crucial to identify and mitigate these biases.
Operationally, the challenges lie in effectively deploying the

model and ensuring it is adopted by end-users, which often requires
integrating the model into existing clinical workflows without sig-
nificant disruptions. To address these operational challenges, we
will engage in thorough testing and conduct training sessions for
healthcare professionals who will use the system.

7 Results
We evaluated multiple models, including traditional machine learn-
ing algorithms and deep learning architectures, to determine their
effectiveness in classifying Alzheimer’s disease from MRI images.
The following table summarizes the performance of each model
across key metrics: accuracy, precision, recall, and F1-score.

Table 2. Performance metrics for each model (sorted by accuracy)

Model Accuracy Precision Recall F1-
Score

YOLO8 98% 70% 72% 75%
YOLO11 CIS 85% 68% 67% 67%
Random Forest 73% 73% 73% 72%
Logistic Regression 66% 68% 66% 65%
SVM 67% 69% 67% 67%
DenseNet121 52% 25% 50% 33%
ResNet50 50% 25% 50% 33%
VGG16 50% 25% 50% 33%
VGG19 50% 25% 50% 33%
EfficientNetB0 50% 25% 50% 33%
InceptionV3 50% 25% 50% 33%
ResNet101 49% 37% 50% 33%

7.1 Analysis of results

Fig. 2. Unhealthy classification
(Confidence: 0.98).

Fig. 3. Healthy classification
(Confidence: 0.96).

7.1.1 Traditional machine learning models.

• Random Forest achieved the highest accuracy among all
models at 73%, with balanced precision and recall, indicat-
ing a good performance in classifying both healthy and
unhealthy cases.

• Support Vector Machine (SVM) showed moderate per-
formance with an accuracy of 67%. The model had higher
precision for classifying unhealthy cases but struggled with
healthy cases.

• Logistic Regression performed the lowest among tradi-
tional models with an accuracy of 66%, serving as a baseline
for comparison.

7.1.2 Deep learning models.

• YOLO8 demonstrated the highest accuracy among deep
learningmodels at 98%, significantly outperforming YOLO11
CIS, which achieved 85%. YOLO8 also exhibited greater sta-
bility in classification tasks, with consistent precision and
recall scores.

• YOLO8’s performance is complemented by its efficiency,
achieving speeds of approximately 2.2–2.5ms for prepro-
cessing, 2.5–3.3ms for inference, and 2.9–3.9ms for non-
maximum suppression (NMS) per image, making it suitable
for real-time applications.

• YOLO11 CIS, while achieving a respectable accuracy of 85%,
had slightly lower precision and recall scores compared to
YOLO8, indicating less stable performance in distinguishing
between healthy and unhealthy cases.

• All other deep learning models (VGG16, VGG19, Efficient-
NetB0, ResNet50, ResNet101, InceptionV3, DenseNet121)
achieved an accuracy around 50%, comparable to random
guessing in a binary classification task. This indicates chal-
lenges in generalizing to the dataset with these architectures.

• The low performance of other deep learning models may
be attributed to overfitting, insufficient training epochs, or
inappropriate learning rates.

• DenseNet121 showed a slightly higher accuracy at 52%, but
this was not significantly better than chance, highlighting
the need for further optimization.
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7.1.3 Discussion. The traditional machine learning models outper-
formed the deep learning architectures in this study. The Random
Forest model, in particular, demonstrated better generalization on
the test data. The deep learning models failed to learn meaningful
patterns from the data, possibly due to:

• Data quantity and quality: Deep learning models require
large amounts of data to train effectively. The dataset may
not have been sufficient for these complex models.

• Training parameters: The number of epochs (5-10) might
have been too low for the models to converge. Additionally,
other hyperparameters like learning rate may need adjust-
ment.

• Class imbalance: If there is an imbalance in the dataset
between healthy and unhealthy classes, it can affect the
training of deep learning models more significantly.

• Model complexity: The deep learning models may be too
complex for the dataset, leading to underfitting or overfit-
ting.

7.1.4 Recommendations. To improve the performance of deep learn-
ing models in future work, consider the following:

• Increase the size of the dataset through data augmentation
techniques.

• Train the models for more epochs and use early stopping to
prevent overfitting.

• Experiment with different learning rates and optimization
algorithms.

• Use techniques like transfer learning with fine-tuning of
pre-trained models.

• Address any class imbalance with resampling methods or
adjusted loss functions.

8 Future work
Future work will focus on several key areas to enhance the model’s
applicability and accuracy:

(1) Model interpretability: To address the complexity and
"black box" nature of deep learning models, we will explore
methods like SHAP values or LIME to increase the trans-
parency and interpretability of the CNN model. This will
help clinicians understand the decision-making process of
the model and increase trust in its predictions.

(2) Operational integration: Future efforts will also focus
on integrating the model into existing clinical workflows.
This includes collaborating with healthcare professionals
to ensure the model’s seamless adoption and conducting
extensive testing in real-world settings to validate its per-
formance.

(3) Continuous learning and updating:We aim to implement
a system for continuous monitoring and updating of the
model to ensure it remains accurate and relevant as new
data becomes available and medical practices evolve.

(4) Exploration of hybrid approaches: Further exploration
into hybrid models that combine CNNs with other ML tech-
niques, such as ensemble methods, could potentially yield
even higher accuracy rates and better diagnostic capabilities.
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