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ABSTRACT
There is no denying that AI, Artificial intelligence, is a versatile
technology with countless applications, but this versatility is far
from its full potential. One of the greatest limitations to modern
AI is its need for carefully formatted data, both to train and make
decisions.

This document covers my research and work on developing an
algorithm to parse data from the Tetris UI, user interface, into AI
digestible data. This project aimed to give insight into techniques
for automatically extracting data from human digestible UIs into
one consistent format for AI use.

The python algorithm produced, Packing Coordinator, uses a
combination of ImageMagick, scikit-image, and Keras to produce
an abstract representation of the current game state. This algorithm
uses images of the game UI as input allowing UIs built with only
humans inmind to be read by AI. Although further work and testing
is needed for stronger conclusions, initial results seem promising
as the algorithm successfuly captured the game state from screen
shots.
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1 INTRODUCTION
One of the long-standing goals of research on Machine Learning
and Artificial Intelligence, in general, is to develop AI that displays
general intelligence, which allows for the AI to fulfill multiple roles
[2]. Ideally, such an AI would also be versatile enough to complete
tasks using pre-existing interfaces designed for human use. This
would be an obvious advantage as the developers looking to use
an AI with general intelligence would not always have the luxury
of changing the user interface or AI to allow the latter to interpret
the former easily [2].

Therefore, designing an AI that can gather information directly
from the computer’s screen would greatly increase the versatility of
that AI. With the ability to gather information more independently
and adapt to small changes the AI would be one step closer to
operating at a similar level to a human.

Naturally such a large step can not be taken in one proverbial
stride, so it must be broken into smaller steps. The first step I
have chosen to take with my research is to develop a program to
convert one type of UI into one universal abstract representation.
Fortunately, Tetris, and video games as a whole, have long served
as a testing ground for machine learning and AI systems, and there
is no shortage of foundational research on the topic.

For that reason this research project focuses on developing an
algorithm to create an abstract representation of the current game
state of any Tetris implementation. Using a convolutional neural
network and a verity of open source tools this algorithm could
gather all the relevant data from a screenshot of the game. This
data would then be formatted into an abstract representation of the
game more easily understood by an AI. This would, assuming no
deviations from stranded game rules, allow an AI built for playing
Tetris to operate across different implementations of Tetris with
out the otherwise necessary changes to its code.

A way to parse data about Tetris from the screen into a form
that an AI can use will, in turn, give insight into how to use similar
methods to parse AI usable data for other tasks from any screen.
This research project has the express goal of answering the question
of whether using neural Networks and machine learning would be
an effective method of parsing the pixels from a screen into data
an AI can effectively work with

2 BACKGROUND AND RELATEDWORK
2.1 Why Tetris?
There are a number of reasons Tetris stands out as an appealing
challenge for this avenue of research. The first and most simple
reason is that Tetris is an old, well-known, and simple game. For this
reason, Tetris has a long history of use in testing machine learning.
The article The game of Tetris in machine learning [1] by Algorta
and Şimşek details how Tetris has been used as a testing ground for
machine learning AI as early as 1996. This same article also covers
how much success different approaches have had over time. The
earliest attempt discussed simply used large-scale feature-based
dynamic programming and tracked the number of holes and the
height of the highest column. Later attempts would go on to include
hand-crafted agents, genetic algorithms, and approximate modified
policy iteration [1].

Furthermore, the article details how, over time, certain practices,
such as using the scoring system of Tetris’s original implementation
over its more complicated successors, have become the standard
for testing AI within Tetris. It is important to give some thought to
which implementation of Tetris is used in testing. There is a myriad
of small but significant changes possible between even standard
implementations. For instance, some versions award additional
points for clearing several rows in one move. More significantly,
implementations vary on whether or not certain moves are allowed.
Sliding a Tetromino sideways into a gap under a placed Tetromino
is one such inconsistently valid move.[1].

Differences between implementations of the game must be con-
sidered when comparing AI performances, as having one AI having
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access to more possible moves or getting more points for complet-
ing the same number of rows can make it look unfairly superior
to an AI tested in an implementation featuring neither of those
features.

Naturally, such a long-used benchmark has a wellspring of re-
sources and foundational research tied to it, such as The game of
Tetris in machine learning [1] and Using dual eye-tracking to unveil
coordination and expertise in collaborative Tetris [6], making it all
the more appealing to use. Tetris is, however, not the only long-
standing benchmark, and its veterancy as a testing ground is not the
end of its merits. Tetris also offers a simple yet sufficiently complex
challenge that features a random element that will prevent the AI
from simply learning an optimal series of keys to press without
being able to adapt this learned method to a task where even one
detail is different from the training set.

For those reasons and a moderate personal familiarity with the
game, Tetris was settled upon as the testing environment for this
research project.

2.2 How humans play Tetris
Fundamentally, a human and an AI see and understand images
very differently, but the two processes share a lot of proverbial
DNA. Understanding how a human visually parses data from the
Tetris UI sheds light on how an algorithm could do the same. Using
dual eye-tracking to unveil coordination and expertise in collaborative
Tetris[6], by Jermann et al., provided a break down of player eye
movement and UI components that received the most attention.
The player’s unplaced tetromino and the contour created by the
stack of placed tetrominoes were the most tracked features.

Beyond knowing what features to track, simply knowing how
to proficiently play Tetris gives its own insights. Jonas Neubauer,
a seven time championship winner, shared his strategies in an
interview.[8] More importantly than the advice its self, these win-
ning strategies can tell us what information is factored into deciding
an optimal move.

With this knowledge of how a human views the UI, and what
information is prioritized, we can begin to form our abstract UI
design. From this insight into the most critical information for a
optimal move, we can reduce the UI to the most important data. The
current Tetromino, the dimensions of the board, and the location of
placed all placed tetrominoes. Thus, using the sameUI and strategies
as a human, an AI could quickly determine and execute its next
move.

2.3 AI implementations
The development stage of this project focused entirely on the Pack-
ager Algorithm over the hypothetical AI it would work with. How-
ever, hypothetical or not the Packager Algorithm’s design is in-
escapably shaped by the AI it works in tandem with. As previously
mentioned, Tetris is a time honored benchmark, and there are al-
ready many well-documented AI developed for the game. Thus,
reviewing the existing AI agents created for the task is a natural
step in the research stage.

Keeping the goal of versatility in mind, it is worth studying the
AI entered into the general game-playing competition featured

in General video game playing [2]. The AIs built for that competi-
tion were centered around versatility and working with no prior
experience of the task.

One of the strategies used by previous attempts was the imple-
mentation of evolutionary algorithms [4]. Looking at their report
on this study, we can see several interesting choices the authors
made, which may inform our own choices. This implementation
chooses the best move by assessing how desirable potential sub-
sequent boards are based on several sub-ratings, the weights of
which are determined by the genetic algorithm. Additionally, this
implementation chooses to use a heuristic approach when rating
boards in order to act more quickly. A valid concern as tetromi-
noes continue to fall from the moment they enter the board. The
board quality is assessed based on 12 metrics, but the authors also
acknowledge that using more complicated calculations to rate how
desirable a board is can have advantages and disadvantages. Using
more criteria to judge a board led to better performance but made
that AI more niche for the exact environment it was trained in [4].

Although this AI is fundamentally different from the hypotheti-
cal AI this project would create, there are still lessons to learn from
this article. Much like with human players, Knowing what data
this AI needs informs the what data is captured by the abstract
representation.

Another team’s work that is rather interesting and, more impor-
tantly, relevant to this project is documented in the paper Tetris
Artificial Intelligence [10]. This team built a Tetris AI that, like last
example, saves time by choosing not to calculate every possible
game state a piece can create. What is more of note is their deci-
sion to make three kinds of AI, each using different strategies. The
”Greedy AI” uses the most intuitive strategy, prioritizing clearing
rows over all else.

A bit more sophisticated was the ”Tetris AI”, which focused on
setting up the board for simultaneous 4-row clear, also known as
scoring a Tetris. It did this by waiting until it has an I piece and four-
row hole to fill. Although both of these AI cleared about the same
number of rows, the ”Tetris AI” achieved higher scores on average.
This increased success came down to the extra points awarded for
clearing clearing multiple rows in one move.

The last and most successful AI created by this team was the
”TwoWide Combo AI”, which specialized in setting up combos over
any one scoring move. This proved to be the most effective of the
three human strategies adapted for use by the teams AI. It also
proved how important data on the incoming tetrominoes is to an
AI’s decision making process. Naturally, this means the data of the
next n tetrominoes provided by most implementation’s preview
window is a high priority for the abstract.

2.4 Suitable working environments
An important aspect of this project was choosing a suitable envi-
ronment to work in, both for testing and code development. During
research far more focus was given to the former of those two due
to the comparative lack of difference between available text edi-
tors. Of course, that doesn’t mean that the latter was a complete
afterthought.

It was decided very early into the development stage that the
code writing and testing will be conducted in two text editors. The
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bulk of the work with the images and their parsing into game state
data was done in Jupiter notebook. This was due to its greater
support for visualizations and quick testing of specific cells of code.
Once code was finished in Jupiter is was then exported as normal
Python code to Atom where the rest of the code was being written.

Despite GitHub announcing the sunsetting of Atom in 2022 it
has remained a reliable text editor for code development and remote
editing. Due to a personal familiarity and this continuing reliability,
the work less reliant on visualizations was conducted with Atom.
This also allowed me to remotely access and work on the collage’s
server for student projects. Many of the libraries featured in this
server were essential to the project.

What seemed more important to give careful consideration to
was the specific details of the environment in which testing was
conducted. Although the base game of Tetris seemed an obvious
choice, using a standard game for testing raised some concerns.
When covering aspects of testing in Tetris that have become stan-
dard, The game of Tetris in machine learning [1] points out how the
need for faster testing led to many researchers using non-standard
implementations. This allows for changes like reducing the game
size to 10 by 10 from 20 by 10. A change that shortens the game
length and, in turn, speeds up AI training.

Although my concern was not with training an AI to play Tetris,
an implementation of Tetris that could be modified on the fly still
had it’s advantages. Most obviously this would facilitate any future
work with AI for the same reasons it helped earlier researchers, but
the advantages extend beyond that. The option to quickly make
changes to implementation’s UI would open up more options for
testing the versatility of the Packaging Coordinator algorithm’s
functions.

Conveniently, the general game-playing competition has led
to the development of an especially qualified environment. The
companion article to General video game playing [2], Towards a
Video Game Description Language [3] goes into depth about the
need for a programming language designed to be easy to interpret
for humans and AI alike. VGDL was written with features that
make games implemented in it conducive to quick modifications
and easy interactions with AI made for general game playing. For
these reasons, an implementation of Tetris written in VGDL was a
goal of early development.

There are a number of articles written subsequent to Towards a
Video Game Description Language [3] that describe the author’s
implementations of VGDL. One such article, XML-Based Video
Game Description Language [7], written by Quiñones and Fernádez-
Leiva, describes a more recent implementation of VGDL, known
as XVGDL, implemented using XML that the authors published to
github. Naturally, the article also explains how to use this imple-
mentation and compares it to other versions of VGDL.

Just as naturally, XVGDL is not the only available implemen-
tation of VGDL, and another article A Video Game Description
Language for Model-based or Interactive Learning [9] details an
implementation of VGDL in PyGame. This other implementation,
PyVGDL, shows how an implementation of VGDL tailored to more
specific needs is far from hard to find.

The complication to all of this was the time investment to find,
or write, a implementation of Tetris using VGDL. Although the
advantages are obvious, the core of this project centers around

parsing standard implementations made for human use. As a result
a VGDL implementation remained a useful, but not essential, tool
for development and testing.

3 DESIGN AND IMPLEMENTATION
The scope of this project ended up changing quite a bit over the
corse of development. In large part this was a side effect of the
gradual process of bringing the proposed project into reality and
realizing more and more how ambitious the the research proposal
truly was. However, by the end of the process the design had suc-
cessfully evolved from a nebulous idea to a actionable plan.

The final design settled on near the end of development uses
three methods to gather Data from the game UI. The files utilizing
these three methods are called by one organizational program, the
Packaging Coordinator. This program ensures that data is passed
between supporting programs, Packaging Coordinator and its sup-
porting programs will be expanded upon in the next section.

3.1 The Packaging Coordinator algorithm
The Packaging Coordinator as mentioned previously serve to call
upon and pass data between the algorithms responsible for the
three methods of data extraction.

After sending and receiving the necessary data from each of
these programs, Packaging Coordinator combines that information
into an abstract representation of the game state. This abstract
representation is stored as an object with the gathered data as
attributes. It also features a matrix the size of the game space with
functions to place new Tetrominoes and automatically clear rows.

After creating the abstract representation, Packaging Coordina-
tor will then continue to update its data each time a new Tetromi-
noes are placed. In addition to placing the new Tetromino on the
board Packaging Coordinator also adds the predictions for each
new Tetromino in next.

3.2 Tetromino identification
Perhaps the most important of the supporting algorithms called
by Packaging Coordinator is Identification. Identification is built
around implementing a Convolutional Neural Network with Keras
used to identify the class of a Tetromino image.

The file it’s self has two behaviors depending on if it is called
directly or merely imported and used for predictions. Calling it
directly trains the network for 15 epochs, and then trains the best
performing model for a further 15 epochs. The idea behind this is
that spending half the training time building upon the best results
will lead to a better performance then simply training the model
for 30 consecutive epochs.

After the model has trained and saved the best results, as mea-
sured by validation accuracy, identify can then be called with iden-
tify.getPred(). This takes a images file path as an argument and
returns the predicted class using the saved model. First this is called
on every Tetromino on the board, but after initial abstract is formed
it is only called upon the Tetromino that enters next.

This method gives any AI using the abstract the knowledge of
the next n Tetrominoes needed to form any strategy beyond stabs
in the dark. The further ahead the AI can previews Tetrominoes,
the more effectively it can calculate the optimal sequence of moves.
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This information is saved in the abstract as an array of the letters
corresponding to incoming Tetrominoes class.

3.3 Grid scan
The second near equally critical algorithm used is Grid Scan, which
returns the dimensional data needed to create the abstract and
locate key UI features. This data includes the number of rows and
columns in the game board and the location of the board and next
window.

This also find the size of a single grid space, from which the ex-
pected location of incoming tetrominoes can be calculated relative
to the game board. This same information is also used to divide the
next window in the event that it previews more then one tetromino.

The initial scan of the game board for its dimensions and current
state is done using the tools from the ImageMagick library. The
main work for this algorithm is using canny edge detection in
determining where grid spaces begin and other features begin and
end. Once edges are isolated they are then measured with the scikit-
image library to determine which edges belong to the desired UI
features. The edge measuring features in scikit-image are also used
to get a bounding box for these features. This bounding box is
used to save UI feature locations on in the abstract representation,
essential information for updating the abstract as the data presented
by the UI changes during gameplay.

3.4 Text extraction
Lastly, text sweep is called on the entire uncropped image. This
algorithm uses pytesseract to extract a string of all the text in the UI.
This text is then searched for keywords that correspond to desired
information. The cleaned data is then saved with this keyword to
the abstract representation’s dictionary for miscellaneous data.

This is primarily done with the goal of giving the AI all the
information a human player would have from their view of the
game. This infrmation may be more relevant to any AIs decision
making process then one would initially expect as the score is not
the only text information in the UI. Many implementations of Tetris
display the game’s current difficulty level, a modifier for how fast
the tetrominoes fall, as text in the UI.

3.5 Purpose made AI
During the initial research and project proposal I had the ambition
to create an AI for the specific purpose of testing the abstract
representation. The idea being that an AI built with that input in
mind would be far better for testing then adapting an existing AI.
It quickly became apparent that these advantages could not justify
the labor required, and the AI was made a secondary goal. This
then became a project extension for future work, but the planing
put into warrants its own subsection.

The purpose made AI, referred to by the working name of Pro-
cess, would be used to test how effectively the abstract representa-
tion captures all important Data. In the most simple testing config-
uration planed, Packaging Coordinator would pass each abstract
representation produced to the AI. Many things would be measured,
but the main focus would be on the AI’s ability to quickly make
and execute optimal moves from the data given.

Similar tests could be done with a modified existing AI, but
the difficulties of working with unfamiliar code may outweigh the
potential time saved. Furthermore, any extensive modifications to
this unfamiliar code to conduct other test would likely be difficult.

Despite all of this, a test AI for the project, be it new or modified,
was always a lower priority. Working around an entirely hypo-
thetical AI brought its own difficulties, but the crux of research
question remained the priority. The actual transformation of the
pixels on the screen into an abstract representation of the game
occurs entirely within the Packaging Coordinator algorithm. Thus,
any plans for AI testing remains a high priority objective in the
possible future work for this project.

3.6 Language to be used
The programming langue Python was used for all of the origi-
nal code written for this project. This was due to my existing fa-
miliarity with the language and the abundance of open source
python libraries. These libraries were invaluable, often featuring
useful functions that would have taken extensive time to write from
scratch.

The idea of using a more specialized languages was considered,
but ultimately dismissed. The idea behind this consideration was
that the benefits of using a programming langue well suited for
each task could outweigh cost in time and effort. However, As
research transitioned into actual developments it became clear that
this would not be necessary or practical. The popularity of the
Python programming language had led to a abundance of open
source Python libraries. Seeing as I was not limited by using only
Python, learning another language for the project did not seem like
a reasonable use of the limited time available.

During research, one idea considered was the potential benefits
of creating a simple Tetris implementation that could easily be
modified for testing. Although such a implementation was ruled
out for the time being, as mentioned in section 2.4, it remains a
possibility for future work. Of the two video game description
languages researched, PyVGDL is the most likely candidate over
XVGDL. Like before this choice came down to a greater personal
familiarity with Python than the alternative, in this case XML.

Looking at the comparison of the two considered languages
provided by XML-Based Video Game Description Language [7], I feel
confident this is the right choice, There are some features supported
by XVGDL that PyVGDL lacks, but none of theme are useful enough
to justify the greater time commitment.

3.7 Data sets to be used
All of the data sets used in this project will unfortunately have to
be created on my own do to the specific nature of the problem. I did
briefly check several repository’s of data sets for Neural Networks
but none had anything remotely close to what was required. As a
result a large part of the early work for this project was dedicated
to building several small data sets from images available on the
internet and screenshots of Tetris games.

The Tetromino Identification Network was trained on a data set
made of images of Tetrominoes, size 100 by 100, classified as either
I, J, L, O, S, T, or Z. This data set started with 10 images in each
class and periodically grew as the project continued. This data set
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was then further expanded with data augmentation by rotating
each image to all possible in game orientations. Although Keras
offered similar tools for data augmentation the rotation function
was insufficient for this task. The need to ensure images were only
rotated to the orientations possible for their class necessitated doing
this with a batch file of ImageMagick commands.

The inputs in the software used by Grid Scan was set based on
observed results across images of the game boards in various stages
of gameplay taken from a verity of Tetris implementations.

The Text Extraction Network selected will likely be trained in
text recognition already but if a data set would be needed thenmany
Data sets of text fonts are already publicly available. If for whatever
reason a data set of text elements from Tetris implementation UIs
is needed then one can be made from the same images used to train
the Grid Scan network.

3.8 Game implementation to be used
Given the objective of the project, standard implementations of
Tetris for ordinary human players were chosen over any research
oriented options.

Due its personal familiarity and ease of accesses, the free imple-
mentation on Tetris.com was used for the majority of development.
After success with this implementation other implementations were
used to test versatility.

Another implementation to be considered is the free and open-
source implementation of Tetris written by Kevin Chabowski in
Python and uploaded to GitHub. This open source implementation
would be the implementation used for testing the Process algorithm
should that project extension be reached. An open source imple-
mentation will allow for a more in-depth look into the specifics
of this implementation and for any necessary modifications to the
code.

These two will not be the only implementations used in the
project but in the interest of time the implementations used can
be boiled down to being publicly available for free. Being freely
available is a rather strong requirement due to a lack of budget
outside of my own funding. If some implementation of Tetris this
is not free to play is somehow uniquely suited for this project then
an exception may be made but this seems highly unlikely.

3.9 Data parsing
The work done in the Packaging Coordinator algorithm will turn
the pixels of the game window, passed to the algorithm as a screen-
shot cropped to the game window, will be parsed into an abstract
representation of the game state. This would necessitate determin-
ing where the borders of certain game components begin and end,
which is made easier by game design elements like most imple-
mentations, making all tetrominoes one solid colour unique to the
particular tetromino type. Similarly, text boxes containing informa-
tion like the score or the current difficulty level have straight or
mostly straight lines acting as a clear stationary border to where
that information starts and stops.

3.10 Convolutional neural network
From the research I have done, convolutional neural networks have
stood out as the best method to parse the screen into an abstract

representation of the game state. Although neural networks, in
general, are good at pattern recognition, a convolutional neural
network would be especially suited for working with images in the
way we intend to.

A convolutional neural network primarily differs from a simple
Artificial Neural Network in that its architecture is specifically
built for working with features specific to images allowing it to be
much more optimised for the task. This optimization is important
as neural networks are inherently rather resource-intensive, and
without it, the risk of overfitting the network goes up considerably.

The general gist of convolutional neural network architecture
is that the input layer holds the pixel value for the image and
feeds into a stack of convolutional layers. The titular convolutional
layer takes a group of pixels and converts them into a single value,
effectively reducing the size of the image from a computational
standpoint. Next is a stack of pooling layers which serve to reduce
the dimensionality of the representation cutting down the needed
computational power even more. This reduced representation of
the image is then passed to the stacks of fully connected layers
which work in way as a normal Artificial Neural Network. [5]

Although the simplified architecture I just covered can be consid-
ered a complete convolutional neural network, it is more common
and advisable to use more stacks of layers than just that for better re-
sults. For instance, it is common practice to have two convolutional
layers before each pooling layer as well as splitting large convo-
lutional layers up into many smaller sized convolutional layers.
[5]

With this particular neural network architecture being so suited
for efficiently working with the massive data set that images create,
I am confident that a convolutional neural network will yield desir-
able results. Even if this research project finds that convolutional
neural networks are not adequate for parsing data on the screen, I
suspect that it is at least a step in the right direction, and a similar
method or architecture could be derived from the lessons learned.

3.11 Testing parameters
During testing a collection of game screenshots paired with their
corresponding moves were used to simulate a running game. These
screenshots captured the moment a new tetromino entered the
board and clears the first row, ensuring empty space on all sides.

In the interest of keeping the UI identical to the UI a human user
would be interacting with, I chose to forgo the common strategy
of decreasing game length by reducing the size of the game board.
However, future work may utilize this in testing for adaptability.
This would be done by changing the dimensions of the game board
to see how well the agents can adapt to a new but similar UI.

For the most part, success in testing was measured by the accu-
racy of the abstract representation compared to the actual state of
the board. Ideally, several different implementations of the game
would be used in validation post-testing to ensure the model does
not suffer from overfitting.

In regards to the potential extension to the project of testing
its digestibility with a AI, I have the following rough plan. Due to
having to dismiss one method of reducing training time, it is worth
looking into the possibility of changing the game implementation
to run much faster so the AI system can train at higher speeds.
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Furthermore, once I have the data to back up such a decision, I
intend to set an artificial cut-off point for training to stop training
beyond the point of significant diminishing returns. Should this
hypothetical AI becomes more then speculative, this plan will be
fleshed out beyond this.

The real concern for testing is the training for the Convolutional
Neural Networks used in Identify. The largest concern here was
finding a sufficient data set to train with, but this one could only be
solved with more time to gather and label data. Something far easier
to account for is the concern of carefully setting the parameters
and structure. Here the plan is to make small changes one at a time
and compare the plotted results to the accuracy and loss before
the change. This strategy allowed for a slow convergence on the
optimal structure and parameters with a clear indication of any
progress being made.

3.12 Software architecture
To elaborate, the abstract representation of the game state is planed
to be represented as a Matrix of board spaces which are filled or
unfilled along with the next n Tetraminoes. Ideally, other data, such
as the score and level, will be passed along as strings.

4 ANALYSIS PLAN
During the development of the project all goals, obstacles encoun-
tered, and successes or failures will be recorded in a document for
work-in-progress notes. These notes will allow for a more detailed
understanding of the over all process and what decisions helped or
hurt development. These notes will primarily be used for writing
the poster at the end of the project. All notes, Work-in-progress or
otherwise, will have the date they were taken recorded in the note.

Once the Networks are being trained then Data recording be-
comes more meticulous. Any time a change is made to the layers of
a Neural Network the specific code for its layers will be copied with
a note of what changed in this iteration and why. Also recorded
with these changes are the accuracy, loss, validation accuracy, val-
idation loss, and number of epochs in training. This data may be
recorded in graphs of the previous statistics over each epoch.

Similarly, a separate document of progress on image manipula-
tion and which parameters and commands yielded the best results
will also be kept. The most promising images from this process
will be saved for latter reference. manipulated images will be saved
with a name derived from the base file, command used, and param-
eters used. This will allow for ease of remembering which images
were created with which effects. the explanation of this naming
convention will also be documented in the image manipulation
notes.

Any errors encountered with a cause more substantial than a
spelling or syntax error will also have their Code and error message
recorded in the general work notes for that day. Once a significant
error is solved the solution will be recorded in that days work notes.

Once training and adjustments are no longer yielding significant
improvements in loss and accuracy it will be time to look through
the data and draw conclusions. The main goal is to find out which
Network Layouts work best for each task and why. The effects
changes have can be demonstrated by the graphs recorded turning
development.

Figure 1: The software architecture for the Package Algo-
rithm (this will be replaced with the final version of the
diagram in the final version of the paper)

5 RESULTS
When given a set of test game frames to simulate gameplay, the
program is able to create and update a abstract representation
of the game state. The game grid it’s self meets the expectations
excellently, it is able to match the dimensions of the game and added
new tetrominoes as it is given placements. Similarly all the critical
data is successfully stored and passed around with the abstract
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object which even has a field for unexpected data that needs to be
saved.

Furthermore the algorithm is able to locate and save the location
of key UI features. Most important among these are the bounding
boxes for the incoming tetromino and the window for the next
tetromino. However, there is a significant issue of inconsistent
accuracy from the Convolutional Neural Network used in Identify.

Although it achieved a modest but commendable accuracy per-
centage in the mid 70s during training, the accuracy is significantly
worse in practice. This comes down to a oversight in the differ-
ence between the white background of the training dataset and
the varied backgrounds found in games. This black background is
addressed using the tools in ImageMagick, but this too is an imper-
fect solution. The resulting distortion, although insignificant to the
human eye, is enough to greatly through off the model’s accuracy.

5.1 Complications encountered
Right away one of the issues I encountered was the lack a data sets
of Tetris game components due to the niche nature of the problem.
Due to the limited number of Tetris game elements this was solved
easily enough by makeing my own small data set from images
found on the web. This did create the new issue of figuring out
how to label the data set in a way the neural network could easily
interpret.

Another complication encountered was that the simple designs
of the 4 block geometric shapes used in Tetris made the neural
network used extremely vulnerable to over fitting. A lot of the early
work on the Identify Convolutional Neural Network was repeatedly
scaling back the number of layers and parameters to account for
the shallowness of the problem.

A small complication that came up was the inability to added
libraries needed to the school’s testing environment. This was re-
solved easily enough by waiting for assistance from faculty, but did
add further delays.

A common but less direct complication to the work came not
from the project its self, but the difficulties of my schedule. I had
made a significant error and scheduled my classes as though it was
an ordinary semester. As a result I found myself balancing large
projects from my upper level Classes with the more important but
less immediate deadlines of my capstone project. Given the chance
to redo the semester, I would have taken a far less busy scheduled
to allow more time for this project.

Perhaps the largest complication was simply underestimating
the scope of the project and the labor required to achieve it. I often
made the mistake of assuming that the existence of a library for a
function I needed would cut all the time out of that aspect of the
project. What I failed to account for was the time needed to learn
these libraries through a combination of reading documentation
and trial and error.

was the underestimation of how familiar I would need to be
with the tools used in the project. Although open source tools
like ImageMagick and Keras were essential pillars of this research
project learning to use them effectively was quite the time sink.

If I could draw any through line across the majority of complica-
tions, it would be a lack of significant experience. Going into this

project I was aware of how many of the goals were generally possi-
ble, but had yet to work with many of the methods needed. After
research was concluded I knew that my goals were achievable and
that the tools needed were available, but not lofty my goals truly
were. To much planning was dedicated to the process of refining
and improving the initial Packaging Coordinator through testing
with AI or custom Tetris implementations.

6 FUTUREWORK
Although testing with a human agent instead of an AI for the deci-
sion making process was expedient it leaves room for improvement.
Continuing this work I would like to test how AI digestible the
abstract representation produced is with a AI disiged to chose the
next move based on the game abstract. This same AI must also be
capable of then relaying it’s next move to the game and updating
the abstract. Ideally this AI would also demonstrate greater versatil-
ity then others due to its ability to play based on an abstract which
can be formed from a verity of different Tetris implementations.

Before any of that can be considered the unreliable Identification
accuracy must be addressed; I have two ideas in mind to do this. The
first is to find a means of cropping an image to the exact boarders
of a tetromino, instead of a bounding box. This would remove the
need to clean the background cutting down on the distortion in
images given the the Convolutional Neural Network. More broadly
a larger data set of tetrominoes would help the model become far
more reliable and versatile. Unfortunately this will be a much more
labor intensive process, but I believe it to be a necessity for any
future work.

Naturally cut features would also be up for consideration as
there removal was more owed to time then their irrelevance to the
research question.

7 CONCLUSION
Having finally reached the end of this project I would call it a
success. The abstract representation may not have been as versatile
or thoroughly developed as I envisioned, but the proof of concept
is there.

I regret that I created such a niche program when the goal was
one that worked across many implementations, still the first step
was taken. The initial results are promising and the largest issues
have a solution in sight. I am confident that with further develop-
ment the versatility of the method would only grow. The addition
of cut features like text extraction and the tuning of parameters to
work on more UI implementations would be a start to this process.
However, further down the road I believe some of these methods
can be applied to other UIs with some modification to parameters.

Beyond what this project contributed to the path towards Arti-
ficial General Intelligence, I myself learned many things. Perhaps
chief among them was the true length of the road from the theo-
retical to the empirical. Along the way I made far slower progress
then anticipated, but learned far more about each of these steps
along the way.

FromKeras I learned farmore about data organization andNeural
Network then I even thought I would need at the outset of this
project. Similarly ImageMagick and Skim-Image both highlighted
the merits of using existing libraries, and the difficulties of making
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them work together. More then that I think I’ve learned a valuable
lesson on the value of extensive research/planning and a good
work flow. I may have made mistakes with the former, but I believe
my growing understanding of the latter saved this project and my
overcrowded semester. I hope I can take these lessons with me
when I leave Earlham, at the vary least I know the last one will
serve me no matter where I go.
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