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ABSTRACT
Facial Emotion Recognition (FER) is a growing field in machine
learning with applications across healthcare, education, and human-
computer interaction. However, current FER systems exhibit de-
mographic biases that limit their precision and fairness between
different populations. This project proposes a deep learning-based
FER system that incorporates bias mitigation strategies, such as
dataset re-weighting, fairness-aware loss functions, and transfer
learning. The model is evaluated on diverse datasets, including
FER2013 and RAF-DB, to measure its effectiveness in improving
recognition accuracy across ethnicities, age groups, and genders.
This research aims to contribute to the development of ethical and
inclusive FER systems.
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Graphical Abstract: Overview of the proposed FER system
with integrated bias mitigation and transfer learning strate-
gies.

1 INTRODUCTION
Facial Emotion Recognition (FER) is a subfield of artificial intelli-
gence that seeks to automatically classify human emotions from
facial expressions. It has broad applications in healthcare, human-
computer interaction, and behavioral analysis. Despite significant
advances in deep learning, FER models continue to suffer from
demographic biases, leading to inconsistent performance across
different ethnicities, age groups, and genders [11, 20, 21].

These biases primarily stem from imbalanced training datasets
and algorithmic limitations [13, 24]. Addressing these biases is
crucial for equitable AI systems, as biased FER models can perpetu-
ate social inequities and lead to harmful consequences [21].

This study proposes a bias-mitigated FER model designed
to accurately recognize seven basic emotions while integrating

fairness-aware training strategies and leveraging transfer learn-
ingwithResNet-50 [22]. Themethodology includes re-weighting
loss functions and a multi-dataset training strategy by inte-
grating FER-2013, RAF-DB, and ExpW, with plans to include
AffectNet. The model’s performance is evaluated using demo-
graphic parity and F1-score.

2 LITERATURE REVIEW
2.1 Introduction
Emotion recognition using machine learning techniques is a rapidly
evolving research area with broad applications in human-computer
interaction, healthcare, and adaptive learning. The primary goal is
to label and categorize various inputs—such as facial expressions,
text, and speech—to interpret human emotional states accurately.
Recent advances have seen the emergence of hybrid deep learning
models, including CNNs combined with recurrent architectures,
which enhance accuracy [1, 7].

2.2 Methods of Data Collection
The quality of collected data—both visual and, in some cases, au-
dio—is fundamental to developing robust FER systems. Mixed data
collection methods enhance generalizability:

• Regional and Cultural Bias: Research indicates that mod-
els trained on datasets from one region (e.g., North America)
may perform poorly on data from other cultural contexts.
For instance, Chen and colleagues demonstrated that mod-
els trained predominantly on North American data have
reduced performance on East Asian facial expressions [7].
Transfer learning techniques [1] allow pre-trained models
to be fine-tuned with region-specific data to alleviate such
bias.

• Image Acquisition: Standardized capture conditions (con-
trolled lighting, fixed frame rates, and consistent camera
setups) are essential. Automated pre-processing techniques
(e.g., facial alignment) further improve data quality.

• Database Creation: Datasets such as EmotioNet [4] and
others (e.g., RAF-DB) provide a mix of lab-controlled and
in-the-wild data, which, when merged, enhance model ac-
curacy and generalizability [17].

• Ethical Considerations: Collecting facial data requires ad-
herence to privacy regulations (e.g., GDPR) and mitigating
annotation biases, as labeling can be influenced by cultural
and gender factors [7].

2.3 Data Processing
After data collection, raw images undergo pre-processing to en-
hance quality and compatibility:
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• Normalization and Facial Alignment: Ensure consistent
input across samples.

• Data Augmentation: Techniques such as rotation, flip-
ping, and brightness adjustments prevent overfitting. The
OpenCV library provides many augmentation utilities [5].

• Feature Extraction:While advanced transforms are some-
times used, current practices rely primarily on deep feature
extraction via convolutional neural networks.

2.3.1 Transfer Learning for EnhancedGeneralization. Transfer learn-
ing leverages pre-trainedmodels (e.g., VGG-16, ResNet-50, Inception-
v3) to adapt to FER tasks. Fine-tuning these models, particularly
by freezing early layers and adapting higher layers, significantly
boosts accuracy when training data is limited [1].

2.3.2 Handling Imbalanced Datasets. Addressing class imbalance
is crucial for fair emotion recognition. Techniques such as resam-
pling and class weighting improve the learning of underrepresented
classes [7].

2.4 Advanced Bias Mitigation Approaches
Recent literature has also explored in-processing methods:

• Adversarial Debiasing: This method forces the learned
feature representations to be invariant to protected attributes.
Alvi et al. demonstrated the effectiveness of this approach
for removing bias from deep neural network embeddings
[2].

• Fairness-Aware Loss Functions: Incorporating fairness
constraints (e.g., via Demographic Parity Loss) directly into
the training loss can align feature distributions across demo-
graphics. Kolahdouzi and Etemad propose a kernel-based
approach for improved distribution alignment [18].

• Generative Counterfactuals and Meta-Learning: Den-
ton et al. used generative counterfactuals to expose and
mitigate bias [10], while recent meta-learning strategies
have been proposed to correct label bias [16, 27].

2.5 Summary and Future Directions
Effective FER requires robust data processing, transfer learning, and
integrated bias mitigation strategies. While re-weighting and data
augmentation provide a baseline improvement, advanced methods
such as adversarial debiasing and fairness-aware loss functions offer
deeper bias correction. Future research should focus on addressing
intersectional bias and standardizing fairness benchmarks in FER
systems.

3 DATASETS AND PREPROCESSING
3.1 Datasets
The datasets used includeExpW, FER2013, RAF-DB, and a planned
integration of AffectNet. Table 1 summarizes these datasets [4, 17].

3.2 Preprocessing Steps
Preprocessing includes resizing, normalization, and data augmenta-
tion to improve robustness and fairness. Augmentation techniques
include:

• Horizontal Flipping (mitigates pose bias).

Table 1: Summary of Datasets Used in the Study

Dataset No. of Images Emotion Classes Demographic
Bal-
ance

ExpW 90,000 7 Diverse,
internet-
collected
data.

FER2013 35,000 7 Class
imbal-
ance,
predom-
inantly
young
sub-
jects.

RAF-DB 30,000 7 + Compound High di-
versity
in race,
gender,
and age.

AffectNet (Planned) 1M+ 8 European-
American
bias
(67.3%).

• Rotation (±10◦–±15◦).
• Brightness and Contrast Adjustments.
• Cutout/Random Erasing (handles occlusions).

The OpenCV library provides many of these functionalities [5].

4 BIAS MITIGATION STRATEGIES
4.1 Re-weighting Techniques
To address imbalances, we apply:

• Class-Based Re-weighting: Assign higher loss weights
to underrepresented classes.

• Demographic-BasedRe-weighting:Adjust sampleweights
to improve fairness.

• Dynamic Loss Adjustment: Modify weights based on
confidence scores.

4.2 Fairness-Aware Loss Functions
Fairness-aware training methods for facial expression recognition
(FER) have begun to incorporate explicit loss terms or regularization
aimed at reducing bias across demographic groups. One common
approach is to add penalty terms based on fairness metrics such as
Demographic Parity or Equalized Odds, which enforce similar
prediction outcomes across protected groups [14]. For example, a
model can be penalized if its emotion classification outcomes differ
significantly between demographics, effectively treating fairness
objectives as additional loss constraints. In practice, implementing
such losses in FER is challenging due to multi-class outputs and
limited label availability for sensitive attributes, but the concept
has been explored in similar classification tasks [14]. Early research
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in affective computing noted the potential of equality of odds con-
straints applied post-hoc to predictors, and recent fairness-driven
training strategies seek to integrate these constraints directly into
model learning [14].

Several recent works propose novel loss functions or training
frameworks explicitly aimed at mitigating bias in FER. ? ] intro-
duce an AU-Calibrated FER (AUC-FER) framework to reduce
annotation bias in emotion labels. Their method leverages facial
Action Units (AUs)—objective indicators of facial muscle move-
ments—to guide the learning process. By adding a calibration loss
that aligns the network’s predicted emotions with AU-based emo-
tion representations, the model is discouraged from relying on
demographic-specific annotation quirks. This effectively serves as a
fairness-aware loss: the network is penalized if its predictions devi-
ate from what the objectively measured AUs would suggest, which
helps correct biases arising from inconsistent or biased human
labels [? ].

Another line of work uses adversarial loss variants to learn
fair representations for FER. In adversarial training, a primary net-
work learns to classify emotions while an adversary attempts to
predict a protected attribute (e.g., gender or race) from interme-
diate features. The FER model is penalized when the adversary
succeeds, thus encouraging demographic-invariant features [23].
For instance, the FAIR-FERmodel proposed by Rizvi et al. [23] em-
ploys a composite loss function that includes a reconstruction loss,
an adversarial discriminator loss, and a perceptual loss to ensure
that the latent features do not encode protected attribute informa-
tion. This approach has demonstrated reduced performance gaps
between demographics with only a minor accuracy trade-off.

In a related vein, Suresh and Ong [26] propose a PositiveMatch-
ing Contrastive Loss tailored to mitigate bias in FER. Instead
of explicitly using protected attribute labels, their loss function
guides the model to focus on task-relevant facial features by lever-
aging expert knowledge of facial anatomy (i.e., Action Units). By
weighting pairwise distances according to AU-based similarity,
the network learns an embedding where intraclass variance due
to demographic factors is reduced. Their method improved fair-
ness substantially—achieving near parity in performance across
groups—without requiring sensitive labels during training [26].

Finally, some methods integrate re-weighting strategies di-
rectly into the loss function to improve fairness. For example, Amini
et al. [3] propose a Debiasing Variational Autoencoder (DB-
VAE) that adaptively up-weights samples from minority groups
during training. Similarly, Singhal et al. [25] report that a class-
weighted cross-entropy loss, which gives higher weight to less
frequent emotion classes, helps alleviate bias and improves fair-
ness metrics in FER. Although class imbalance is not synonymous
with demographic bias, addressing it can indirectly mitigate biases
in FER datasets where certain emotions are underrepresented in
specific demographic groups.

In summary, fairness-aware loss functions in FER range from
incorporating classical fairness constraints (e.g., demographic par-
ity) to using adversarial losses and custom contrastive losses that
guide the model toward demographically invariant feature learning.
These techniques, used alone or in combination, have demonstrated
promising improvements in reducing bias across gender, race, and
age groups [23, 26? ].

Table 2: Comparison of Bias Mitigation Strategies

Strategy Goal Technique

Re-weighting Balance impact Adjust loss function
weights.

Oversampling Improve representation Synthetic data, class
balancing.

Fairness Loss Enforce fairness Adversarial debias-
ing, Demographic
Parity.

5 MODEL ARCHITECTURE
Facial Emotion Recognition (FER) models require robust deep learn-
ing architectures to extract meaningful features while mitigating
bias. This study evaluates two architectures: a baseline Convolu-
tional Neural Network (CNN) and a ResNet-50-based transfer
learning model.
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Figure 1: System Architecture: End-to-end pipeline for Facial
Emotion Recognition, including data preprocessing, model
training, bias mitigation, and evaluation.

5.1 Baseline CNN Architecture
The baseline CNN is trained from scratch with the following struc-
ture:

• Input: RGB images of shape (224, 224, 3) from FER2013 and
RAF-DB.

• Convolutional Layers:
– Conv2D(32, 3 × 3, ReLU)→ MaxPooling2D(2 × 2)
– Conv2D(64, 3 × 3, ReLU)→ MaxPooling2D(2 × 2)
– Conv2D(128, 3× 3, ReLU)→ MaxPooling2D(2× 2)

• Fully Connected Layers:
– Flatten→ Dense(128, ReLU)→ Dropout(0.5)
– Output: Dense(7, Softmax) (7 emotion classes)

• Optimization: Categorical Crossentropy, Adam optimizer
(lr = 0.0001), 10 epochs, batch size = 32.
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5.2 Transfer Learning with ResNet-50
To improve generalization and reduce training time, we employ
ResNet-50, pre-trained on ImageNet:

• Base Model: ResNet-50 [22]
• Modifications:

– Remove fully connected layers, retaining the convolu-
tional backbone.

– Freeze early layers; fine-tune the last 10 layers.
– Append: Global Average Pooling→ BatchNorm→

Dense(256, ReLU)→ Dropout(0.5)→ Softmax(7).
• Training Strategy: Progressive learning rate reduction to

prevent overfitting.

5.3 Architectural Considerations and Fairness
Deep transfer learning has become a cornerstone of modern FER
systems. A variety of convolutional neural network (CNN) architec-
tures pre-trained on large-scale face datasets are fine-tuned for emo-
tion recognition [12]. Common backbones include VGG-16/VGG-
19, ResNet-50, Inception (GoogLeNet), and MobileNet, each
offering trade-offs in performance, model size, and potential fair-
ness.

For instance, VGG-16 has historically been favored for its depth
and strong performance on benchmarks like FER2013, though its
high parameter count makes it computationally intensive [12].
ResNet-50, with its residual skip connections, not only matches or
exceeds VGG-16 in accuracy but is also more parameter efficient,
thereby easing the training of deeper networks [12]. In several
studies, ResNet-based FER models have demonstrated high recog-
nition accuracy—often around 72–73% on FER benchmarks—with
relatively lower bias across demographic groups [12, 15].

In contrast, Inception architectures use parallel convolutional
paths to capture multi-scale features and have been shown to
achieve competitive accuracy, albeit slightly below that of VGG or
ResNet on FER datasets [12]. For scenarios requiring real-time per-
formance or deployment on resource-constrained devices, lighter
models like MobileNet and EfficientNet offer a compelling trade-
off. These architectures sacrifice a modest drop in accuracy for
significantly reduced computational demands and are particularly
appealing for real-time FER applications [12].

An emerging consideration is the impact of model architecture
on fairness. Recent work by Hosseini et al. [15] compared several
FER models—including ResNet-based CNNs and Vision Trans-
formers (ViT)—and found that ViTs exhibited higher bias (i.e.,
greater performance discrepancies across demographic groups)
compared to ResNet models. This suggests that beyond raw accu-
racy, architectural choices can influence the fairness of FER systems.
In addition, using pre-trained face recognition models (e.g., models
pre-trained on VGGFace2 or MS-Celeb) can enhance FER per-
formance if the pre-training data is sufficiently diverse, although
bias in the pre-training data may carry over if not corrected during
fine-tuning [9, 19].

Ultimately, the choice among architectures depends on the ap-
plication context: high-end systems may favor the accuracy of
ResNet-50 or ensemble methods, while mobile applications may
lean toward lightweight models likeMobileNet. The decision should

be informed not only by overall accuracy but also by fairness across
different demographic groups [12, 15].

6 TRAINING AND EVALUATION METRICS
6.1 Training Setup
The model is trained on FER2013 and RAF-DB using TensorFlow
and Keras with the following parameters:

• Input Shape: (224, 224, 3) RGB images.
• Batch Size: 128.
• Epochs: 10.
• Loss Function: Categorical Crossentropy.
• Optimizer: Adam (learning rate = 1 × 10−5, reduced dy-

namically).
• Validation Split: RAF-DB used for validation.
• Early Stopping: ReduceLROnPlateau (based on validation

loss).
• Augmentation: Horizontal Flip, Rotation, Zoom, Bright-

ness, and Contrast Adjustments.

6.2 Evaluation Metrics
Performance is evaluated using:

• Accuracy: Overall percentage of correct classifications.
• F1-Score: Weighted balance of precision and recall for im-

balanced classes.
• Confusion Matrix: Visual representation of prediction

distribution across emotion classes.

6.3 Training Performance
Table 3 summarizes the training and validation performance.

Table 3: Training and Validation Performance

Metric Training Validation

Accuracy 36.98% 37.90%
Loss 1.6250 1.7210

7 RESULTS AND DISCUSSION
This section presents the results obtained from training and vali-
dating the FER model, analyzing performance, training trends, and
the effectiveness of bias mitigation strategies.

7.1 Model Performance
The comparison between the baseline CNN and the fine-tuned
ResNet-50 indicates that transfer learning significantly improves
accuracy. However, further hyperparameter tuning is needed to
optimize both performance and fairness.

7.2 Training Trend Analysis
Training accuracy increases steadily over epochs, with validation
accuracy showing similar trends but with fluctuations in loss. These
fluctuations suggest that extended training or a more aggressive
learning rate decay may be beneficial.
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7.3 Key Observations
• Transfer learning with ResNet-50 provides a significant

improvement over a CNN trained from scratch.
• Bias mitigation strategies—especially adversarial debias-

ing and fairness-aware loss functions—are promising for
reducing demographic bias [2, 13, 18].

• Generative counterfactual techniques and meta-learning
approaches offer additional avenues for mitigating label
bias [10, 16, 27].

• Further research is required to systematically evaluate fair-
ness across diverse demographic groups.

7.4 Expanded Discussion and Implications
Integrating these research insights into our FER project offers valu-
able perspectives on both our current methodology and potential
improvements:

• Validation of Current Methods: Our approach employs
re-weighting of training data and adversarial debiasing
within a ResNet-50 framework. The literature shows that
re-weighting can reduce disparities across demographic
groups [25], while adversarial debiasing effectively forces
the model to learn invariant representations [23]. These
findings support our design choices and encourage further
tuning, perhaps by incorporating additional components
such as reconstruction losses to better preserve expression
information [23].

• Architectural Considerations:The decision to use ResNet-
50 is validated by studies indicating that ResNet models
achieve both high accuracy and relatively lower bias com-
pared to other architectures (such as Vision Transformers)
[15]. Our results, which show a modest performance gap
across demographics, align with these findings. However,
future experiments could consider integrating facial Action
Unit information, as suggested by Suresh and Ong [26], to
further refine fairness without sacrificing performance.

• Opportunities for Enhancement: The expanded sur-
vey indicates that combining multiple fairness-aware tech-
niques (e.g., contrastive losses based on facial AUs, or multi-
objective optimization for accuracy and fairness) might
yield even better outcomes. Our current evaluation primar-
ily reports overall accuracy and simple group-wise metrics.
Going forward, incorporating standardized fairness bench-
marks and more granular evaluations—such as measuring
Equalized Odds and demographic parity differences—will
be crucial [6, 8].

• Long-Term Research Directions: Finally, the research
points to a need for a standardized fairness framework
in FER. This reinforces our plan to include cross-dataset
validation and bias detection tools in future iterations. By
addressing intersectional bias and scaling our methods to
real-world data, our project can contribute to building FER
systems that are both high-performing and equitable.

In conclusion, the literature confirms that our chosen methods
are on a solid footing, while also highlighting several avenues
for future improvements. Integrating these advanced strategies
and evaluations will not only bolster our project’s impact but also

align it with the cutting edge of research in fair facial emotion
recognition.

8 FUTUREWORK IN BIAS-MITIGATED FER
Despite progress, several challenges remain for achieving truly fair
and unbiased FER systems. Key directions for future work include:

• Addressing Intersectional Bias: Current research often
tackles bias one attribute at a time (e.g., gender or race).
However, intersectional groups (such as older women of
color) can experience compounded biases. Future FER sys-
tems should be evaluated on these intersections, necessi-
tating the collection of datasets that adequately represent
such subgroups. Novel re-weighting methods or fairness
constraints that account for multiple protected attributes
simultaneously are largely unexplored and represent a sig-
nificant opportunity for future research [9].

• Balancing Accuracy and Fairness Trade-offs: Increas-
ing fairness frequently comes at the expense of overall accu-
racy. Research is needed to develop training methods that
minimize this trade-off. Multi-objective optimization tech-
niques that simultaneously maximize classification accu-
racywhileminimizing bias are promising, as are approaches
such as fairness-aware model calibration or causal infer-
ence methods to disentangle task-relevant from bias-related
features. The goal is to embed fairness into FER models
without a significant degradation in performance [25, 26].

• Standardized Fairness Benchmarks and Evaluation:
Unlike object recognition, FER currently lacks agreed-upon
benchmarks for assessing bias and fairness. The establish-
ment of standardized evaluation protocols—including bal-
anced benchmark datasets and common fairness metrics
(e.g., true positive rate parity, equalized odds)—would facili-
tate more reliable comparisons across methods. A dedicated
fairness evaluation framework for FER, potentially inspired
by existing toolkits like Fairlearn, could drive progress in
this field [6, 8].

• Scalability to Real-World Conditions:Many bias mitiga-
tion techniques have been validated on relatively small or
controlled FER datasets. A pressing open question is how
these techniques scale to real-world systems that process
streaming video and diverse, uncontrolled inputs. Future
work should explore continual and federated learning ap-
proaches to ensure that fairness holds as data evolves over
time, as well as automated bias detection in large-scale FER
deployments [12].

By pursuing these avenues—addressing intersectional bias, refin-
ing accuracy-fairness trade-offs, standardizing fairness evaluation,
and ensuring real-world scalability—future research can help bridge
the gap between academic FER models and equitable, deployable
systems.
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