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ABSTRACT

Machine learning has played an important role in sign language
recognition over the past decade. However, many existing systems
are complex, require extensive computational power, and lack pre-
cision in real-time use. This project aims to develop a simple and
time-efficient sign language-controlled robot that interprets Amer-
ican Sign Language (ASL) gestures to perform movement-based
tasks. Built with a Raspberry Pi, the robot will communicate with
a nearby laptop to detect and classify signs in real time. Building
on prior research, this project will use lightweight computer vision
techniques for static sign recognition. It will focus on improving
static sign detection accuracy while minimizing latency, enhancing
overall system responsiveness. The study highlights the potential
of sign language for human-machine interaction, with broader ap-
plications in accessibility and inclusion.

Keywords: Neural Network, Deep Learning, Computer Vision,
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1 INTRODUCTION

Human-machine interaction (HMI) is a rapidly evolving field that
bridges the gap between humans and technology, enabling intuitive
communication and control of machines. As technology becomes
more integrated into daily life, effective HMI systems are crucial for
making complex systems accessible to a wide range of users. One
promising approach to HMI is gesture recognition, which allows
users to interact with machines through natural and intuitive move-
ments. This method eliminates the need for traditional interfaces
like keyboards or touchscreens, making it particularly valuable in
scenarios where hands-free or remote operation is necessary.

Gesture-based HMI systems have transformative potential across
numerous fields. In healthcare, they can enable surgeons to control
medical devices during operations without physical contact, reduc-
ing the risk of contamination. Similarly, in industrial applications,
workers can control machinery in hazardous environments without
direct contact, increasing safety and efficiency.

However, despite their promise, gesture recognition systems face
key challenges. Real-time recognition of complex, dynamic gestures
remains difficult due to variations in hand shapes, motion speeds,
and environmental lighting conditions. Additionally, accurately
mapping these gestures to machine commands requires advanced
computational models and efficient hardware integration. These
challenges limit the reliability and practicality of gesture-based
interfaces in real-world applications.

This project aims to address these challenges by developing a
gesture-controlled robot capable of interpreting American Sign
Language (ASL) gestures. By leveraging state-of-the-art computer
vision techniques alongside Raspberry Pi-based robotics, the system
will improve the accuracy and responsiveness of gesture-based HMI.
This advancement will contribute to the broader adoption of HMI
technology in accessibility, robotics, and beyond. We seek to create
amore inclusive, efficient, and human-centered approach to human-
machine interaction.

2 RELATED WORK

Controlling a robot without explicitly using a remote controller
can be achieved in multiple ways. It can be controlled via voice
commands, hand gesture control, or even accelerometer-based con-
trol. These technologies can be efficient and life-changing if imple-
mented correctly. A lot of research has been conducted in voice and



sentiment analysis detection, and although significant research has
also been done in hand gesture recognition, there is still much to be
explored in the field of sign language detection. Effective gesture
recognition is foundational for a sign language-controlled robot.
Studies have explored ways to recognize hand gestures, especially
in the context of sign language recognition. One main challenge
many researchers have identified is the complexity and diversity
of signs in American Sign Language (ASL). Many signs are static,
while others are dynamic. Additionally, many dynamic signs look
very similar at the beginning, making them difficult to distinguish.

2.1 Common Approaches for Static Signs
Recognition

Many studies have investigated static sign recognition and achieved
high accuracy. Barbhuiya et al. (2021) focused on static gesture
recognition using pre-trained AlexNet and VGG16 models. Features
extracted from the ImageNet dataset were then classified using a
support vector machine (SVM), yielding high accuracy in static sign
recognition. While Barbhuiya et al. (2021) only used RGB channels
in the images to train their neural network, Kuznetsova et al. (2013)
highlighted the role of depth cameras in capturing detailed hand
gesture features from static hand signs. Their approach utilizes
a multi-layered random forest model, taking advantage of depth
information in the image to classify each sign. Their model input is
a 3D point cloud, which they first cluster to group similar classes
together. The first random forest (RF) layer classifies each cluster
of similar signs, and the second layer classifies each sign within
each cluster. This alternative method to CNNs also achieves good
accuracy with low training time. However, similar to Barbhuiya et
al. (2021), their experiment is only valid for static images.

2.2 Two Streams Networks

Other methods combining various features of a single image have
been investigated and have yielded even better results for static
signs. Specifically, Dadashzadeh et al. (2020) proposed a two-stage
fusion network, taking advantage of the appearance of an image
(RGB color channel) and the segmentation map of the sign. The
image is first transformed into a segmentation map, delimiting the
hand performing the sign, and then two CNNs are fed with the
segmented gesture map and its RGB appearance, respectively. Their
outputs are combined at the decision level using summation tech-
niques to produce the final classification. Similarly, Xu et al. (2014)
took advantage of depth information to delimit the hand and then
used the RGB color channel for skin color detection. Combining
depth and RGB features yielded more accurate results than using
just one channel.

The previous studies highlight the role of depth cameras as well
as regular RGB cameras in recognizing sign languages. Combining
these streams of information yields even better results, according
to Dadashzadeh et al. (2020) and Xu et al. (2014). This approach
allows them to overcome issues such as similar skin and background
colors as well as lighting problems. This innovative approach of
cleverly combining various streams of information deserves more
exploration, as there are various ways to fuse them—at the decision
level, feature level, or data level. Additionally, each of the individual
streams can have many different architectures, leaving room to
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explore creative designs and combinations to achieve better results
in static sign classification.

2.3 Dynamic Signs Recognition

While a great amount of work has been done in static sign detection,
there is still room for improvement, especially in dynamic sign
detection. In the quest to recognize larger amounts of signs in ASL,
including dynamic signs, researchers have confronted issues such as
detecting when a dynamic sign starts and ends. It is crucial to have a
rough idea of the window in which the sign occurs. If it is inaccurate,
one sign may look too different and be classified as another sign. In
addition, it is essential to make sense of the relationship between
each frame in a dynamic sign. There is a logical order between each
frame that must be considered to achieve high accuracy.

2.4 3D CNNs

Considering the relationship between each frame in a dynamic
sign, researchers developed a new type of CNN to add an extra
dimension of time. They are called 3D CNNs, in contrast to con-
ventional 2D CNNs, based on the number of input dimensions they
can handle. Li et al. (2020) and Kopuklu et al. (2019) leveraged 3D
CNN s to address the problem of the time dimension in dynamic
sign detection. On testing data, they achieved high accuracy, seem-
ingly addressing the problem of detecting dynamic signs. However,
in a real environment, it is crucial to know when a sign is being
performed to efficiently pass the specific frames to the 3D CNN for
sign classification.

Addressing the issue of knowing the starting and ending points
of a sign, Xu et al. (2014) used a specific static gesture to mark
these points. This approach allowed them to use previous work on
static gesture recognition to show when a dynamic sign starts and
ends. While promising, this approach does not explicitly solve the
problem of detecting the ending and starting points of a dynamic
sign. To address this, Kopuklu et al. (2019) trained a 3D CNN to
infer when a sign is being performed. They used a sliding window
approach, with 8 frames fed to their 3D CNN to detect if a movement
is being performed. Specifically, to avoid multiple activations, they
implemented a weighted classification score to activate detection
only above a specific threshold. This way, Kopuklu et al. (2019)
could detect when a dynamic sign is being performed and use a set
number of frames to classify the exact sign being made.

2.5 Limits of 3D CNNs

While innovative and promising, 3D CNNs require extensive amounts
of data to train. Since they are used to recognize video patterns,
which involve more data than regular images, they need to learn
more complex models. Although this problem is partially addressed
by Li et al. (2020) by creating a new large dataset for dynamic hand
gesture recognition, the training time of 3D CNNss is significantly
impacted due to the large amounts of data.

Finally, further work can be done in refining techniques to detect
specifically when a gesture starts and ends. It is a complex task
because a sign can be confused with a simple unintended movement.
However, such advancements in this area are crucial for improving
dynamic gesture detection. Being able to accurately detect when a
sign starts and ends will enable the sign classifier model to process
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the correct frames, containing only the specific sign, and hence
perform better classification.

2.6 Application to Robotics

Overall, in the context of creating a robot controlled by sign lan-
guage, there appears to be little work done in various ways. While
Xu et al. (2014) used explicit hand gestures to control their robot,
most of the studies do not apply their work to small robots specifi-
cally. Most of the work focused solely on recognizing hand gestures
or sign language without applying it to robots, which is my goal.
After reviewing the current state of the field, there appear to be two
main challenges and areas for improvement. The first is the possi-
bility of combining RGB and depth image information at different
stages and in innovative ways to achieve higher accuracy in static
sign classification. Secondly, there is room to improve efficiency in
detecting the starting and ending points of dynamic gestures. These
two aspects are interconnected and are both crucial to advancing
the field.

3 METHODOLOGY

The proposed system comprises two primary components: the sign
recognition system and the robot.

3.1 Dataset

In this project, I used three different datasets to train my model as
it was important to increase the variety of the images to achieve
higher accuracies. The first one was found on the internet, the
second one was created by me and the third was a mix of both.

The first dataset, found on the internet, is the American Sign
Language (ASL) Alphabet dataset from Kaggle. It contains 87,000
images of hand gestures representing the 26 letters of the Eng-
lish alphabet. As Figure 2 shows, the images were captured under
various lighting conditions and orientations, mostly with white
backgrounds. For the sake of this project, I am only interested in
four signs in this dataset, which indicate the four possible direc-
tions the robot can move. Specifically, the letter L represents the
left direction, R the right direction, N the north direction (forward),
and S the south direction (backward). These signs were chosen
because they have a dual meaning: the letter itself and a direction.
Hence, out of all 87,000 images in my dataset, I was only interested
in about 8,000 images, which constitute my base dataset for my
model. Data augmentation, such as rotation, flipping, and bright-
ness adjustments, was applied to increase the variety within this
dataset, allowing the model to generalize well and avoid overfitting.

As Figure 3 shows, the second dataset created by me, differs
from the first one due to the variety of background colors, patterns,
and lighting conditions. It was crucial to have a dataset with more
variety than just a white background so my model could achieve
high accuracy regardless of the environment. My dataset consisted
of a total of 160 images, with 40 images in each category. Similarly
to the first dataset, each category represents a direction the robot
can follow. In order to make my dataset more suitable for training,
I increased its size through data augmentation, such as rotation,
flipping, and brightness adjustments. The final size of my dataset
with augmented data was 640, with 160 images per category.

Figure 2: Sample images of kaggle dataset

right right

left

Figure 3: Sample images of my dataset

Lastly, the third dataset was a mix of both the dataset from
kaggle and the one created by me. Each of the four classes had the
same number of images, 80, for a total of 320 for the entire mixed
dataset. Within each class there are 40 images from my dataset and
40 images from kaggle dataset. Balancing the number of images
for each class was crucial to avoid bias and overfitting, as well as
making sure the overall dataset is a good mix of both dataset. The
ideas behind making a mixed dataset is to compare the performance
of each model based on the dataset.

Finally, before training, the images of both datasets were resized
to 150x150 pixels, and the pixel values were normalized between -1
and 1. This ensured that the model received the same data shape
for each image and also contributed to increasing the accuracy of
the model.

3.2 Pre-trained Models

Importing Pre-trained Models appeared as the best solution to
achieve good performance as their architectures were specifically
made for edge detection. They also already perform well on classi-
fication task containing hundreds of categories, they are good to
detect patterns in image recognition. In addition it requires exten-
sive datasets and computational resources to train such models to
achieve good performances. For these reasons I chose to import
Pre trained models with their weights trained on the imagenet
dataset, assuring a minimal good accuracy. Specifically, vGG16 and
DenseNet201 pre trained were chosen for my tasks of classification.



VGG16 was chosen for its strong features extraction capabilities
and its high accuracy for classification tasks. On the other hand,
DenseNet201 was chosen for its efficiency in complex images pro-
cessing task as well as its computational efficiency making it perfect
for real time application.

3.3 Hybrid Fusion of DenseNet201 and VGG16

Various approaches using these pre-trained models were tried to
obtain the best accuracy under different conditions and environ-
ments. The selected method consists of fusing the outputs of two
pre-trained models at an intermediate stage, taking advantage of
their individual strengths.

3.3.1 DenseNet201 Architecture.

Figure 4 shows the general DenseNet architecture. It is a deep
Convolutional Neural Network (CNN) that consists of four dense
blocks, where each layer receives inputs from all previous layers.
DenseNet201 specifically cotains 201 layers making it deeper and
potentially more powerful for complex feature extraction.
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Figure 4: DenseNet Architecture: A Deep CNN with 201 Lay-
ers Divided in 4 blocks

3.3.2 VGG16 Architecture.

Figure 5 shows the architecture of VGG16. It is a deep learning
model with 16 layers, structured into five convolutional blocks that
extract image features step by step. Unlike DenseNet201, which
uses global average pooling, VGG16 flattens the feature maps be-
fore passing them through three fully connected layers, making it
computationally heavier but effective for classification tasks.
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Figure 5: VGG-16 Architecture: A Deep CNN with 16 Layers,
Including Convolutional, Max-Pooling and Fully Connected
Layers

Both models were imported with the classification layers trun-
cated and instead adding dense and dropout layers.

3.3.3  Fusion Architecture.

Leveraging the strengths of both architectures, I implemented
a hybrid fusion model that combines highly abstracted features
extracted by DenseNet201 and VGG16. First, each model processes
the input image separately, extracting high-level features through

PREDICTION

Soft-max
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their respective layers. Both models generate a compact feature rep-
resentation of the input, reducing dimensionality while preserving
essential information.

Next, the extracted features are concatenated to form a unified
feature vector. To refine this fusion, an attention mechanism is
applied, learning the importance of each feature and enhancing the
most relevant ones. Finally, the fused feature representation passes
through a fully connected layer for classification, ensuring that
the combined model benefits from DenseNet201’s efficient feature
reuse and VGG16’s deep hierarchical representations.

This hybrid fusion technique differs from decision and feature-
level fusion in its approach to combining information from multiple
models. Feature-level fusion directly merges features extracted by
each model before classification. On the other hand, decision-level
fusion combines the final predictions made by each model. In my
model, hybrid fusion occurs at an intermediate stage, after they
have passed through certain layers but before final decision-making.
An attention mechanism is then used to refine and weight the fea-
tures, allowing the model to take advantage of the complementary
strengths of each model. This technique proved to work and achieve
high accuracies on both datasets.

3.3.4 Training Specifications.

The model was trained using the RMSprop optimizer, which is a
derived version of Adam optimizer, with categorical cross-entropy
loss, employing a batch size of 32 and an initial learning rate of
0.001. Early stopping and learning rate reduction were applied to
prevent overfitting and optimize convergence.

3.4 Data Framework

Perfectly integrating my sign language classification model in the
overall robot computer system was crucial to minimize latency
between the two system.

The robot is made of a raspberry and thus is not able to support
the classification model due to its limited computational capabilities.
To avoid this problem, the model run on a nearby laptop with
sufficient computational capacities. A private wifi connection is
broadcasted by the robot and the laptop connect to it sending back
and forth data between the two devices. The TCP/IP protocol is
used with the robot running a server and waiting connection from
the laptop (client). The robot is set to listen on a specific port and
the laptop send request via a client socket. Once the communication
is establish the laptop and robot can exchange data with low latency
within a range of a few meters.

Equipped with a camera, the robot sends frames to the connected
laptop. Once received, each frame received are processed by the
laptop to classify the sign made in front of the camera. Once pre-
dicted the output is sent back to the robot and moves accordingly.
An extra module in addition to the raspberry pi is added to control
the individual motors of the robot, facilitating the control of the
robot based on the predicted movement. Figure 6 shows the data
flow between the different components of this system.
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Figure 6: Data Flow Architecture

4 RESULTS

4.1 Training Results

With the three models proposed (VGG16, DenseNet201, and VGG16
x DenseNet201 Fused), [ was able to train them on the three datasets
I had. Table 1 shows how each model performs on their respective
training and validation datasets. VGG16 is optimal on My Images
dataset, achieving 96% accuracy. On the other hand, DenseNet201 is
optimal on Kaggle Dataset, with 98% accuracy. Overall, this means
that individual pre-trained models perform well on these datasets
and are able to recognize general patterns within them. However,
when these pre-trained models are tested on datasets other than the
ones they were trained on, their accuracy drops significantly. Table
2 shows that VGGI16, trained on My Images dataset, achieves only
47% accuracy on Kaggle Dataset. Similarly, DenseNet201, trained on

Kaggle Dataset, achieves only 57% accuracy on My Images dataset.
This clearly demonstrates how these two individual models struggle
to generalize their results. They perform well when classifying
images similar to those they were trained on but struggle when
encountering different images.

The fusion model generalizes better the results learned from one
dataset to another. It is due to its architecture taking advantage of
the strength of each individual pre-trained, making it easier to learn
general pattern and not focus on the background. Table 2 shows
how the fusion model performs well even when the validation
dataset is different from the dataset it was trained one. When it is
trained on My Images dataset it achieves an accuracy of 78% on
Kaggle Dataset, against 47% achieved by VGG16. Similarly, when
the fusion model is trained on Kaggle Dataset and tested with My
Images dataset it achieves an accuracy of 82% against 57% achieved
by DenseNet201. Although not perfect, the accuracy achieved by
the fusion model is better than the individual pre-trained model,
showing that they can learn more complex patterns and generalize
them.

Model Training and Validation Dataset | Accuracy
VGG16 My Images 0.96
- Kaggle Dataset 0.97
DenseNet201 | My Images 0.91
- Kaggle Dataset 0.98
Fusion My Images 0.82
- Kaggle Dataset 0.97
- Mixed Dataset 0.91

Table 1: Training performance of VGG16, DenseNet201, and
Fusion models.

Model Training Dataset | Validation Dataset | Accuracy
VGG16 My Images Kaggle Dataset 0.47
- My Images Mixed Dataset 0.74
- Kaggle Dataset | My Images 0.60
- Kaggle Dataset | Mixed Dataset 0.74
DenseNet201 | My Images Kaggle Dataset 0.49
- My Images Mixed Dataset 0.74
- Kaggle Dataset | My Images 0.57
- Kaggle Dataset | Mixed Dataset 0.71
Fusion My Images Kaggle Dataset 0.78
- My Images Mixed Dataset 0.74
- Kaggle Dataset | My Images 0.82
- Kaggle Dataset | Mixed Dataset 0.91
- Mixed Dataset My Images 0.80
- Mixed Dataset Kaggle Dataset 0.95

Table 2: Cross-dataset evaluation of VGG16 and DenseNet201.

4.2 Live Classification
4.2.1 Classification.

The previous tables show encouraging results and performance
achieved by the different models developed. Testing live classifi-
cation in different environments, with multiple backgrounds and



various people performing the signs, is also a crucial part. Live
classification matters more than validation tests, as the robot will
not always be in the same environment, and the goal is for it to
adapt to different environments and users.

After performing 48 signs across various backgrounds and people
performing them, 32 were correctly predicted, which results in an
accuracy of 66.6%. This is 15-20% lower than what was expected
based on the cross-validation accuracy. Nonetheless, this accuracy
is still promising, as it provides better results than random guessing,
which would achieve an accuracy of 25%.

Table 3 shows the prediction distribution across the four classes.
The sign South is the most recognized one, followed by Right and
Left. They all achieved decent—even great—scores, apart from the
sign North. Its very low score of 16.6% shows that the model strug-
gles to recognize it. This might be due to confusion with the sign
Right, as both are similar in the sense that two fingers—the index
and the middle finger—are extended either upward or downward
and separated from the rest of the hand.

Incorrectly Predicted | Correctly Predicted | Success %
Left 3 9 75.0%
North | 10 2 16.6%
Right | 2 10 83.3%
South | 1 11 91.6%

Table 3: Live classification performance using the fusion
model.

4.2.2 Latency.

Another key parameter to consider is the overall latency of the
system. Over 100 classifications, the mean time it took the fusion
model to make its prediction was 0.24 seconds. Given that the
model was run on an average laptop with no additional or high-
end computational resources, and considering the large size of the
model, an average prediction time of 0.24 seconds is quite good.

The total time to run all 100 predictions was 4.23 minutes. This
includes capturing the frame, sending it to the computer, perform-
ing the prediction, sending the result back to the robot, and the
robot confirming the movement. On average, the entire process for
one prediction, including both communication and computation
took 2.63 seconds.

This timing is acceptable given the resources used. Moreover, a
response time under three seconds is generally considered sufficient
for daily tasks, especially in accessibility applications.

5 CONTRIBUTIONS TO THE FIELD

This project will contribute to the field of computer vision in multi-
ple ways. First, by developing innovative techniques for static and
dynamic gesture recognition and combining multiple CNN architec-
tures, I aim to discover novel and efficient methods for recognizing
hand gestures. While many architectural types have been explored,
there is still room for combining different machine learning tech-
niques in creative ways. Additionally, if I have the opportunity to
work on dynamic gesture recognition, my contributions will help
advance the understanding of accurately detecting when a gesture
starts and ends. This capability is crucial for future improvements
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in the field of sign language detection, and my work will play a
part in addressing this challenge.

Furthermore, my project will demonstrate the integration of ges-
ture recognition with Arduino robotics for real-time applications.
While significant progress has been made in facilitating human-
computer interaction, my work will contribute specifically to the
development of human-robot interaction in the context of a sign-
controlled robot. Finally, the scalable framework I propose for cre-
ating gesture-controlled robots has potential applications in other
areas, such as accessibility and education. For instance, individ-
uals with voice impairments can benefit from advancements in
human-computer interaction through sign language, and similar
implementations could be valuable in educational settings.

Ultimately, my work aims not only to develop new techniques
in the field of sign language detection but also to contribute to
the broader effort to enhance accessibility and education through
innovative human-robot interaction solutions.

6 FUTURE WORK

Summarize my work and outline future research directions.
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