
Project Proposal

Stevie Bronsard

April 2025

Abstract

Object detection has long been a complicated prob-
lem in computer vision, and has only recently rapidly
improved thanks to the creation of deep learning algo-
rithms, like YOLO and SSD. This paper has for goal
to create two different types of deep learning object
tracking software which can be applied on a Rasp-
berry Pi vehicular robot called Follower and compare
their performances. The vehicle robot will be running
Python on a Raspberry Pi 5 and will use a small fixed
camera. The two object detection softwares will con-
sist of Ultralytics YOLOv8, which is one of the most
recent versions of YOLO, and SSD. Follower should
be able to track any object as long as it is fully visible
on the camera and has been processed in the model
of whichever object detection software is running on
Follower.

1 Introduction

Object tracking technology has developed exponen-
tially the past few year, from basic goals like tracking
wild animals to the creation of the first self-driving
car. However, while object tracking technology func-
tions is available to all through expensive products
like drones, the ability to use this software without
paying a large sum is really only accessible to those
with knowledge on the subject. Thankfully, object
detection software is often open source, so all that is
really needed is to make programs which use object
detection for land and air vehicles also available to
all. This paper focuses on object detection for terres-
trial vehicles and offers a guide to both assemble the
robot in question and how its software functions.

2 Survey

2.1 YOLO

Of the object detection techniques that have been
created using deep learning, one of the most impact-
ful was You Only Look Once (YOLO) [1]. YOLO is

an object detection program created in 2016. YOLO
works by creating a grid on an input, then running
a Convolutional Neural Network model (CNN) to
predict bounding boxes for each box in the grid, thus
identifying objects within each box. At the same
time, YOLO creates a class probability map to find
which adjacent boxes have a significant object over-
lap. Finally, YOLO performs non-max suppression
(a process to filter out insignificant bounding boxes).
The result consists of large bounding boxes enclosing
the significant detected objects. YOLO has evolved
many times over the years, like YOLOX, YOLOv8,
and YOLOv11 [2].

2.2 SSD

Another popular object detection software created
in 2016 is the Single Shot MultiBox Detector (SSD)
[3]. Like YOLO, SSD uses a single deep neural
network to locate and classify objects in images.
SSD runs a deep learning CNN with multiple layers
to create feature maps, and defines points on the
center of the objects detected by the feature maps,
thus locating the objects on the picture. By using a
fixed set of bounding boxes and analyzing the ratios
in the feature maps, SSD can then predict object
categories and bounding box adjustments. Thus, by
using feature maps at different scales, SSD detects
objects of different sizes and shapes.

2.3 Comparing YOLO and SSD

This paper is not the first to test the difference in
performance between YOLO and SSD. The perfor-
mances of SSDLite and YOLOv3-tiny were tested on
a RAspberry Pi and compared by A. Gunnarsson in
2019 [4]. To be precise, the classification networks
Gunnarsson used were MobileNetV2 for SSDLite
and Tiny Darknet for YOLOv3-tiny. By testing
both models on a Raspberry Pi 3 B+, Gunnarsson
found that SSDLite did outperform YOLOv3-tiny in
both speed and accuracy. Unfortunately, the limited

1



processing power of the Raspberry Pi 3 B+ hindered
both models from achieving good performance, thus
the results are not definite.

While the author states that SSD was empirically
faster and generally more accurate, they do not delve
into the architectural reasons why SSDLite with
MobileNetV2 is more efficient than YOLOv3-tiny
with Tiny Darknet. However, one potential reason
mentioned for YOLO performing worse in accuracy
might be related to the models’ training sizes;
the YOLO model was trained on 416x416 images,
whereas the SSD model was trained on 300x300
images, and testing with smaller input sizes (96x96,
160x160, 224x224) might disproportionately affect
models trained on larger images.

It should also be noted that the object used in
the tests was a person in order to see how well the
detector can perform for surveillance purposes. This
means high speed is not essential, thus SSD with in-
put sizes of 224x224 and 160x160 would both work
well for that purpose. The robot in this paper will
be identifying much smaller and faster objects, thus
SSD will probably use different input sizes.

3 Design

The design of this project’s robot will take place in
three sections: assembling the robot parts, train our
object detection models, and implement the object
tracking software. The two object detection algo-
rithms we will import will be Ultralytics YOLOv8
and SSD. We will rely on the PyTorch library to set
up the necessary libraries.

3.1 Assembling Follower

I will be using the OpenSpec GoPiGo robot kit
from the Dexter Industries for mobility. I will also
implement an Arducam for Raspberry Pi Camera
Module 3 to gather live footage from the robot. The
camera will either be installed onto a mini rotating
platform on Follower itself or will be fixed in place.
Follower will also have an object sensor in the front,
so that the robot may identify when an obstacle is
in front on it. However, if target object is found,
the directive to go straightforward will override the
object sensor until Follower is within two meters of
the target.

The next step will be to set up the Raspberry Pi
5. This simply means install a fresh Raspberry Pi

OS, specifically the 64-bit Raspberry Pi OS Book-
worm version. The Raspberry Pi will need to have
a General Purpose Input/Output (GPIO) script in
order for Follower to know which pins on the circuit
activate which part, like the direction the wheels will
roll.

3.2 Training the Models

To create our own YOLO or SSD models, we will
generate our own training model; we will take a large
amount of pictures of whatever the object we want to
track will be and use those images to train the model.
We will then use Roboflow to create bounding boxes
over the object we want to detect throughout multi-
ple images. Roboflow is a computer vision tool which
will allow the object detection program to identify the
targeted objects. Using Roboflow, we will train our
models directly with the images of identified objects.
For this to work, we might need to use Google Co-
lab, but, in theory, using one of Earlham’s CS servers
should work perfectly well. The result should be a
functioning YOLO or SSD model which we can run
on either images or videos at 640x480 resolution.

3.3 Implementing the Object Track-
ing Software

Both object detection models will result with a
bounding box surrounding the target object, thus the
box will have an id we can refer to in our python code.
We will make the Raspberry Pi run the object detec-
tion model, and once the object is identified we can
use the bounding box id to make Follower move to-
wards the target. If the target moves behind a wall or
large object, we will code Follower to stop, observe
around, and resume the chase once the target pops
back up.

4 Evaluation Plan

The project will consist of building Follower and
then testing both object tracking software programs
on it. To test the object tracking programs, we must
first find an object for Follower to track. In our case,
the models we will create will be aimed at identifying
a red remote-controlled toy car. The car will be
bright red and the testing ground will be in a gray
and white room to create a good contrast. The test-
ing ground will probably be in CST316, a room with
many chairs and tables. This will allow Follower to
have little trouble identifying the toy car but have a
difficult time navigating the objects blocking the way.

2



The test will happen in the following fashion: the
toy car will follow a pre-determined path, and Fol-
lower will attempt to follow it until it the toy car
arrives at the destination and Follower catches up or
once Follower fully loses sight of the toy car and can
no longer find it. We will purposefully make the toy
car navigate through the chairs to see how well will
the robot do when confronted with obstacles. The
test will be repeated ten times for each object track-
ing program, thus ten tests for YOLO and ten tests
for SSD. We will then analyze the results by observ-
ing how much time did it take Follower to reach the
toy car until the end and how closely did Follower
follow the path the toy car took. The latter allows us
to confirm how quickly will Follower track its target
and how will it adapt to the target turning.

5 Contributions

5.1 Core Contributions

The results of this project should be an analysis of
how do YOLOv8 and SSD compare on a Raspberry
Pi 5 when used for the purposes of tracking a small
object moving at a similar speed. This study is essen-
tially building off the study by A. Gunnarsson previ-
ously mentioned [4], the main differences consisting of
updated equipment and software, differing libraries,
and the moving camera.

5.2 Auxiliary Contributions

This project will also let me see how much has YOLO
improved over the years. Early versions of YOLO like
YOLOv3-tiny tend to have more localization errors
compared to other detection systems [ctan], so one
of the goals is to see how well YOLOv8 does when
used on a RaspberryPi 5 [5].

6 Risks

I believe I will encounter a lot of difficulties while
designing this project. The main ones will be figuring
out how to connect the bounding box to Follower ’s
instructions, ensuring a way for Follower to deal with
obstacles and vision obstructions, and identifying
how close must the toy car be to Follower for the
latter to start following its target. We will figure
out how to connect the bounding box to Follower ’s
instructions through further investigations of YOLO
and SSD.

The way for Follower to deal with obstacles is
currently to simply wait in place and look around.
However, that relies on the target to continue to
move or for the obstruction to not be large enough
that it fully blocks the view of the target’s travel.
Previous research has found ways to to deal with
this conundrum, but they require the installation of
programs like SLAM that might impede the object
tracking software [6]. A possible plan is to make
Follower identify a path around the object, but that
solution must be tested first. If obstacles become
too much of a problem, they will simply be removed
from the testing ground.

When it comes to the uncertain proximity of the
target to Follower, that can be tested after the model
is created. The goal is for the toy car to still be
identifiable by Follower at least 8 to 10 meters away.
If necessary, the models can be re-run to account
for the distance and we can program Follower to
stay farther away from the target to not get confused.

Another big risk is the Raspberry Pi being un-
able to run the software due to insufficient process-
ing power. If that issue comes up, we can either find
ways to increase the processing power or we can rely
on a computer’s system to run the object detection
for Follower and transmit the results to it through a
network connection.

7 Special Resources

Resources
1 Raspberry Pi 5

2
Arducam for Raspberry Pi Camera
Module 3

3 Open spec GoPiGo robot kit
4 Small Grey Room in CST

3



8 Timeline

This project will be completed over a 15 week
semester. The primary deliverables will be a tech-
nical report, a poster presentation, and a project
demonstration video. In the first 6 weeks of the
semester, I plan to assemble Follower with the object
tracking software programs implemented. The next
9 weeks would then consist of analyzing the data,
writing the report, and creating the presentation.

Week Deliverables
1
2 Version 0 of the Technical Report

3
Version 0 of the Data Architec-
ture Diagram

4
Version 0 of the Graphical Ab-
stract

5
Version 1 of the Data Architec-
ture Diagram and Graphical Ab-
stract

6 Version 1 of the Technical Report

7
Version 2 of the Data Architec-
ture Diagram and Graphical Ab-
stract. Version 0 of the Poster

8
Version 0 of the Project Demon-
stration Video

9 Version 2 of the Technical Report
10 Version 1 of the Poster

11
Version 3 of the Data Architec-
ture Diagram and Graphical Ab-
stract

12
Version 1 of the Project Demon-
stration Video

13 Version 3 of the Technical Report

14
Version 2 of the Poster and
Project Demonstration Video

15 Final Versions of All Deliverables

References

[1] Redmon, J., Divvala, S., Girshick, R., & Farhadi,
A. (2016). You only look once: Unified, real-time
object detection. Proceedings of the IEEE con-
ference on computer vision and pattern recogni-
tion, 779–788.

[2] Reis, D., Kupec, J., Hong, J., & Daoudi, A.
(2023). Real-time flying object detection with
yolov8. arXiv preprint arXiv:2305.09972.

[3] Liu, W., Anguelov, D., Erhan, D., Szegedy, C.,
Reed, S., Fu, C.-Y., & Berg, A. C. (2016).
Ssd: Single shot multibox detector. Computer
Vision–ECCV 2016: 14th European Conference,

Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part I 14, 21–37.

[4] Gunnarsson, A. (2019). Real time object detec-
tion on a raspberry pi.

[5] Varghese, R., & M., S. (2024). Yolov8: A novel
object detection algorithm with enhanced per-
formance and robustness. 2024 International
Conference on Advances in Data Engineering
and Intelligent Computing Systems (ADICS), 1–
6. https://doi.org/10.1109/ADICS58448.2024.
10533619

[6] Li, M., Li, J., Cao, Y., & Chen, G. (2024). A
dynamic visual slam system incorporating object
tracking for uavs. Drones, 8 (6), 222.

[7] binti Rasidi, N. I., Al-Sanjary, O. I., Kashmola,
M. Y., & Aik, K. L. T. (2022). Development
on autonomous object tracker robot using rasp-
berry pi. 2022 IEEE 10th Conference on Sys-
tems, Process & Control (ICSPC), 29–33.

4

https://doi.org/10.1109/ADICS58448.2024.10533619
https://doi.org/10.1109/ADICS58448.2024.10533619

	Introduction
	Survey
	YOLO
	SSD
	Comparing YOLO and SSD

	Design
	Assembling Follower
	Training the Models
	Implementing the Object Tracking Software

	Evaluation Plan
	Contributions
	Core Contributions
	Auxiliary Contributions

	Risks
	Special Resources
	Timeline

