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Figure 1: Graphical Abstract

ABSTRACT
Machine learning has played an important role in sign language
recognition over the past decade. However, many existing systems
are complex, require extensive computational power, and lack pre-
cision in real-time use. This project aims to develop a simple and
time-efficient sign language-controlled robot that interprets Amer-
ican Sign Language (ASL) gestures to perform movement-based
tasks. Built with a Raspberry Pi, the robot will communicate with
a nearby laptop to detect and classify signs in real time. Building
on prior research, this project will use innovative computer vision
techniques for static sign recognition. It will focus on improving
static sign detection accuracy while minimizing latency, enhancing
overall system responsiveness. The study highlights the potential
of sign language for human-machine interaction, with broader ap-
plications in accessibility and inclusion.

Keywords: Neural Network, Deep Learning, Computer Vision,
Raspberry Pi, Robotics, Sign Language

1 INTRODUCTION
Human-machine interaction (HMI) is a rapidly evolving field that
bridges the gap between humans and technology, enabling intuitive
communication and control of machines. As technology becomes
more integrated into daily life, effective HMI systems are crucial
for making technology accessible to a wide range of users. One
promising approach to HMI is gesture recognition, which allows
users to interact with machines through natural and intuitive move-
ments. This method eliminates the need for traditional interfaces
like keyboards or touchscreens, making it particularly valuable in
scenarios where hands-free or remote operation is necessary.

Gesture-based HMI systems have transformative potential across
numerous fields. In healthcare, they can enable surgeons to control
medical devices during operations without physical contact, reduc-
ing the risk of contamination. Similarly, in industrial applications,
workers can control machinery in hazardous environments without
direct contact, increasing safety and efficiency.

However, despite their promise, gesture recognition systems
face key challenges. Real-time recognition of complex, dynamic
gestures remains difficult due to variations in hand shapes, mo-
tion speeds, and environmental lighting conditions. Additionally,
accurately mapping these gestures to machine commands often
requires complex computational models and face latency problems.
These challenges limit the reliability and practicality of gesture-
based interfaces in real-world applications . This project aims to
address these challenges by developing a simple and low-latency
gesture-controlled robot capable of interpreting American Sign
Language (ASL) gestures. Using innovative computer vision tech-
niques and a Raspberry Pi-based robot, the system will recognize
and perform tasks based on signs performed in a time-efficient
manner. This advancement will contribute to the broader adoption
of HMI technology in accessibility and robotics, creating a more in-
clusive, efficient, and human-centered approach to human-machine
interaction.

2 RELATEDWORK
Controlling a robot without explicitly using a remote controller
can be achieved in multiple ways. Among them, control via voice
commands and hand gestures is promising. A lot of research has
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been done in voice detection and recognition, and although signifi-
cant research has also been done in hand gesture recognition, there
is still much to be explored in the field of sign language detection.
Effective gesture recognition is foundational for a sign language-
controlled robot. Studies have explored ways to recognize hand
gestures, especially in the context of sign language recognition. One
main challenge many researchers have identified is the complexity
and diversity of signs in American Sign Language (ASL). Many
signs are static, while others are dynamic. Additionally, many dy-
namic signs look very similar under different angles making them
difficult to distinguish.

2.1 Common Approaches for Static Signs
Recognition

Many studies have investigated static sign recognition and achieved
high accuracy. Barbhuiya et al. (2021) focused on static gesture
recognition using pre-trained AlexNet and VGG16 models. Features
extracted from the ImageNet dataset were then classified using a
support vector machine (SVM), yielding high accuracy in static sign
recognition. While Barbhuiya et al. (2021) only used RGB channels
in the images to train their neural network, Kuznetsova et al. (2013)
highlighted the role of depth cameras in capturing detailed hand
gesture features from static hand signs. Their approach utilizes
a multi-layered random forest model, taking advantage of depth
information in the image to classify each sign. Their model input is
a 3D point cloud, which they first cluster to group similar classes
together. The first random forest (RF) layer classifies each cluster
of similar signs, and the second layer classifies each sign within
each cluster. This alternative method to CNNs also achieves good
accuracy with low training time. However, similar to Barbhuiya et
al. (2021), their experiment is only valid for static images.

2.2 Two Streams Networks
Other methods combining various features of a single image have
been investigated and have yielded even better results for static
signs. Specifically, Dadashzadeh et al. (2020) proposed a two-stage
fusion network, taking advantage of the appearance of an image
(RGB color channel) and the segmentation map of the sign. The
image is first transformed into a segmentation map, delimiting the
hand performing the sign, and then two CNNs are fed with the
segmented gesture map and its RGB appearance, respectively. Their
outputs are combined at the decision level using summation tech-
niques to produce the final classification. Similarly, Xu et al. (2014)
took advantage of depth information to delimit the hand and then
used the RGB color channel for skin color detection. Combining
depth and RGB features yielded more accurate results than using
just one channel.

The previous studies highlight the role of depth cameras as well
as regular RGB cameras in recognizing sign languages. Combining
these streams of information yields even better results, according
to Dadashzadeh et al. (2020) and Xu et al. (2014). This approach
allows them to overcome issues such as similar skin and background
colors as well as lighting problems. This innovative approach of
cleverly combining various streams of information deserves more
exploration, as there are various ways to fuse them—at the decision
level, feature level, or data level. Additionally, each of the individual

streams can have many different architectures, leaving room to
explore creative designs and combinations to achieve better results
in static sign classification.

2.3 Dynamic Signs Recognition
While a great amount of work has been done in static sign detection,
there is still room for improvement, especially in dynamic sign
detection. In the quest to recognize larger amounts of signs in ASL,
including dynamic signs, researchers have confronted issues such as
detecting when a dynamic sign starts and ends. It is crucial to have a
rough idea of the window inwhich the sign occurs. If it is inaccurate,
one sign may look too different and be classified as another sign. In
addition, it is essential to make sense of the relationship between
each frame in a dynamic sign. There is a logical order between each
frame that must be considered to achieve high accuracy.

2.4 3D CNNs
Considering the relationship between each frame in a dynamic
sign, researchers developed a new type of CNN to add an extra
dimension of time. They are called 3D CNNs, in contrast to con-
ventional 2D CNNs, based on the number of input dimensions they
can handle. Li et al. (2020) and Kopuklu et al. (2019) leveraged 3D
CNNs to address the problem of the time dimension in dynamic
sign detection. On testing data, they achieved high accuracy, seem-
ingly addressing the problem of detecting dynamic signs. However,
in a real environment, it is crucial to know when a sign is being
performed to efficiently pass the specific frames to the 3D CNN for
sign classification.

Addressing the issue of knowing the starting and ending points
of a sign, Xu et al. (2014) used a specific static gesture to mark
these points. This approach allowed them to use previous work on
static gesture recognition to show when a dynamic sign starts and
ends. While promising, this approach does not explicitly solve the
problem of detecting the ending and starting points of a dynamic
sign. To address this, Kopuklu et al. (2019) trained a 3D CNN to
infer when a sign is being performed. They used a sliding window
approach, with 8 frames fed to their 3DCNN to detect if a movement
is being performed. Specifically, to avoid multiple activations, they
implemented a weighted classification score to activate detection
only above a specific threshold. This way, Kopuklu et al. (2019)
could detect when a dynamic sign is being performed and use a set
number of frames to classify the exact sign being made.

2.5 Limits of 3D CNNs
While innovative and promising, 3DCNNs require extensive amounts
of data to train. Since they are used to recognize video patterns,
which involve more data than regular images, they need to learn
more complex models. Although this problem is partially addressed
by Li et al. (2020) by creating a new large dataset for dynamic hand
gesture recognition, the training time of 3D CNNs is significantly
impacted due to the large amounts of data.

Finally, further work can be done in refining techniques to detect
specifically when a gesture starts and ends. It is a complex task
because a sign can be confused with a simple unintendedmovement.
However, such advancements in this area are crucial for improving
dynamic gesture detection. Being able to accurately detect when a
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sign starts and ends will enable the sign classifier model to process
the correct frames, containing only the specific sign, and hence
perform better classification.

2.6 Application to Robotics
Overall, in the context of creating a robot controlled by sign lan-
guage, there appears to be little work done in various ways. While
Xu et al. (2014) used explicit hand gestures to control their robot,
most of the studies do not apply their work to small robots specifi-
cally. Most of the work focused solely on recognizing hand gestures
or sign language without applying it to robots, which is my goal.
After reviewing the current state of the field, there appear to be two
main challenges and areas for improvement. The first is the possi-
bility of combining RGB and depth image information at different
stages and in innovative ways to achieve higher accuracy in static
sign classification. Secondly, there is room to improve efficiency in
detecting the starting and ending points of dynamic gestures. These
two aspects are interconnected and are both crucial to advancing
the field.

3 METHODOLOGY
The proposed system comprises two primary components: the sign
recognition system and the robot.

3.1 Dataset
In this project, three different datasets were used to train the model
as it was important to increase the variety of the images to achieve
higher accuracies. The first one was found on the internet, the
second one was created for this project and the third was a mix of
both.

The first dataset, found on the internet, is the American Sign
Language (ASL) Alphabet dataset from Kaggle. It contains 87,000
images of hand gestures representing the 26 letters of the Eng-
lish alphabet. As Figure 2 shows, the images were captured under
various lighting conditions and orientations, mostly with white
backgrounds. Four signs in this dataset were selected for the sake
of this project, which indicate the four possible directions the robot
can move. Specifically, the letter L represents the left direction, R
the right direction, N the north direction (forward), and S the south
direction (backward). These signs were chosen because they have
a dual meaning: the letter itself and a direction. Hence, out of all
87,000 images only 8,000 images were selected, which constitute my
base dataset for the model. Finally, data augmentation, such as rota-
tions, flipping, and brightness adjustments, was applied to increase
the variety within this dataset, allowing the model to generalize
well. These transformations were carefully selected to preserve the
general shape of the signs. Excessive rotation could create ambi-
guity by resembling a different sign or altering its meaning. Since
sign language is precise and orientation-sensitive, only limited data
augmentation was used to maintain the integrity of each gesture.

As shown in Figure 3, the second dataset, created for this project,
differs from the first one due to the variety of background colors,
patterns, and lighting conditions. Including greater environmental
diversity was essential to enable the model to achieve high accuracy
regardless of the background. This dataset consisted of a total of 160
images, with 40 images per category. As with the first dataset, each

Figure 2: Sample images of Kaggle dataset

category represents a direction the robot can follow. To make the
dataset more suitable for training, its size was increased through
careful data augmentation techniques similar to the first dataset.
The final augmented dataset contained 640 images, with 160 images
per category.

Figure 3: Sample images of my dataset

Lastly, the third dataset was amix of both the dataset fromKaggle
and the one created for this project. Each of the four classes had
the same number of images, 80, for a total of 320 for the entire
mixed dataset. Within each class there are 40 images from the self
made dataset and 40 images from the Kaggle dataset. Balancing
the number of images per class was essential to avoid bias and
overfitting, while also ensuring the dataset was a representative
mix of both sources. The purpose of creating this mixed dataset
was to compare the model’s performance across different dataset
compositions.

Finally, before training, the images of both datasets were resized
to 150x150 pixels, and the pixel values were normalized between -1
and 1. This ensured that the model received the same data shape
for each image and also contributed to increasing the accuracy of
the model.

3.2 Pre-trained Models
Importing pre-trained Models appeared to be the best solution to
achieve good performance as their architectures were specifically



Vassily Lombard

made for edge detection. They also already perform well on classi-
fication tasks containing hundreds of categories and they are good
at detecting patterns in image recognition. In addition extensive
datasets and computational resources are required to train such
models to achieve good performance. For these reasons, I chose
to import pre-trained models with their weights trained on the
imagenet dataset, assuring a minimal good accuracy. Specifically,
vGG16 and DenseNet201 pre-trained were chosen for my classifi-
cation tasks. VGG16 was chosen for its strong features extraction
capabilities and high classification task accuracy. On the other
hand, DenseNet201 was chosen for its efficiency in complex image
processing tasks as well as its computational efficiency, making it
perfect for real-time applications.

3.3 Hybrid Fusion of DenseNet201 and VGG16
Various approaches using these pre-trained models were tried to
obtain the best accuracy under different conditions and environ-
ments. The selected method consists of fusing the outputs of two
pre-trained models at an intermediate stage, taking advantage of
their individual strengths.

3.3.1 DenseNet201 Architecture.
Figure 4 shows the general DenseNet architecture. It is a deep

Convolutional Neural Network (CNN) consisting of four dense
blocks, where each layer receives inputs from all previous layers.
DenseNet201 specifically contains 201 layers, making it deeper and
potentially more powerful for complex feature extraction.

Figure 4: DenseNet Architecture: A Deep CNN with 201 Lay-
ers Divided in 4 blocks

3.3.2 VGG16 Architecture.
Figure 5 shows the architecture of VGG16. It is a deep learning

model with 16 layers, structured into five convolutional blocks that
extract image features step by step. Unlike DenseNet201, which
uses global average pooling, VGG16 flattens the feature maps be-
fore passing them through three fully connected layers, making it
computationally heavier but effective for classification tasks.

Figure 5: VGG-16 Architecture: A Deep CNN with 16 Layers,
Including Convolutional, Max-Pooling and Fully Connected
Layers

Both models were imported with the classification layers trun-
cated and instead adding dense and dropout layers.

3.3.3 Fusion Architecture.
Leveraging the strengths of both architectures, I implemented

a hybrid fusion model that combines highly abstracted features
extracted by DenseNet201 and VGG16. First, each model processes
the input image separately, extracting high-level features through
their respective layers. Both models generate a compact feature rep-
resentation of the input, reducing dimensionality while preserving
essential information.

Next, the extracted features are concatenated to form a unified
feature vector. To refine this fusion, an attention mechanism is
applied, learning the importance of each feature and enhancing the
most relevant ones. Finally, the fused feature representation passes
through a fully connected layer for classification, ensuring that
the combined model benefits from DenseNet201’s efficient feature
reuse and VGG16’s deep hierarchical representations.

This hybrid fusion technique differs from decision and feature-
level fusion in its approach to combining information from multiple
models. Feature-level fusion directly merges features extracted by
each model before classification. On the other hand, decision-level
fusion combines the final predictions made by each model. In my
model, hybrid fusion occurs at an intermediate stage, after passing
through specific layers but before final decision-making. An atten-
tion mechanism is then used to refine and weigh the features, allow-
ing the model to take advantage of the complementary strengths
of each model. This technique proved to work and achieve high
accuracies on both datasets.

3.3.4 Training Specifications.
The model was trained using the RMSprop optimizer, which is

a derived version of the Adam optimizer, with categorical cross-
entropy loss, employing a batch size of 32 and an initial learning rate
of 0.001. Early stopping and learning rate reduction were applied
to prevent overfitting and optimize convergence.

3.4 Data Framework
Integrating my sign language classification model into the robot
computer system was crucial to minimizing latency between the
two systems.

The robot is made of a Raspberry Pi and thus cannot support the
classification model due to its limited computational capabilities.
The model runs on a nearby laptop with sufficient computational
capacities to avoid this problem. The robot broadcasts a private wifi
connection, and the laptop connects to it. It allows the two devices
to communicate and send back-and-forth data between the two
devices. The TCP/IP protocol is used with the robot running a server
and waiting for a connection from the laptop (client). The robot is
set to listen on a specific port, and the laptop sends requests via a
client socket. Once the communication is established, the computer
and robot can exchange data with low latency within a few meters
range.

The robot has a camera mounted on top and sends frames to the
connected laptop. Once received, the laptop collects a set number
of frames in a buffer and selects the least blurry one to pass to
the classification model for sign prediction. Once a prediction is
made, the buffer is flushed, and the output is returned to the robot,
which moves accordingly. This process is repeated for multiple sign
predictions. An extra module, in addition to the Raspberry Pi, is
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Figure 6: Data Flow Architecture

added to control the individual motors of the robot, facilitating
movement based on the predicted sign. Figure 6 shows the data
flow between the different components of this system.

4 RESULTS
4.1 Training Results
The three models proposed (VGG16, DenseNet201, and VGG16 x
DenseNet201 Fused) were trained on the three datasets proposed
in the methods section. Table 1 shows how each model performs
on their respective training and validation datasets. VGG16 is opti-
mal on My Images dataset, achieving 96% accuracy. On the other
hand, DenseNet201 is optimal on Kaggle Dataset, with 98% accu-
racy. Overall, this means that individual pre-trained models per-
form well on these datasets and can recognize general patterns

within them. However, their accuracy drops significantly when
these pre-trained models are tested on datasets other than those
they were trained on. Table 2 shows that VGG16, trained on My
Images dataset, achieves only 47% accuracy on Kaggle Dataset. Sim-
ilarly, DenseNet201, trained on Kaggle Dataset, achieves only 57%
accuracy on My Images dataset. It clearly demonstrates how these
two individual models struggle to generalize their results. They
perform well when classifying images similar to those they were
trained on but struggle when encountering different images.

The fusion model better generalizes the results learned from one
dataset to another. It is due to its architecture taking advantage
of the strength of each individual pre-trained, making it easier to
learn general patterns and not focus on the background. Table 2
shows how the fusion model performs well even when the valida-
tion dataset differs from the dataset it was trained on. When it is
trained on My Images dataset, it achieves an accuracy of 78% on
Kaggle Dataset, against 47% achieved by VGG16. Similarly, when
the fusion model is trained on Kaggle Dataset and tested with My
Images dataset, it achieves an accuracy of 82% against 57% achieved
by DenseNet201. Although not perfect, the accuracy achieved by
the fusion model is better than the individual pre-trained model,
showing that they can learn more complex patterns and generalize
them.

Model Training and Validation Dataset Accuracy
VGG16 My Images 0.96
- Kaggle Dataset 0.97
DenseNet201 My Images 0.91
- Kaggle Dataset 0.98
Fusion My Images 0.82
- Kaggle Dataset 0.97
- Mixed Dataset 0.91

Table 1: Training performance of VGG16, DenseNet201, and
Fusion models.

Model Training Dataset Validation Dataset Accuracy
VGG16 My Images Kaggle Dataset 0.47
- My Images Mixed Dataset 0.74
- Kaggle Dataset My Images 0.60
- Kaggle Dataset Mixed Dataset 0.74
DenseNet201 My Images Kaggle Dataset 0.49
- My Images Mixed Dataset 0.74
- Kaggle Dataset My Images 0.57
- Kaggle Dataset Mixed Dataset 0.71
Fusion My Images Kaggle Dataset 0.78
- My Images Mixed Dataset 0.74
- Kaggle Dataset My Images 0.82
- Kaggle Dataset Mixed Dataset 0.91
- Mixed Dataset My Images 0.80
- Mixed Dataset Kaggle Dataset 0.95

Table 2: Cross-dataset evaluation of VGG16 andDenseNet201.



Vassily Lombard

4.2 Live Classification
4.2.1 Classification.

The previous tables show encouraging results and performance
from the different models developed. Testing live classification in
various environments, with multiple backgrounds and various peo-
ple performing the signs, is also crucial. Live classification matters
more than validation tests, as the robot will not always be in the
same environment, and the goal is to adapt to different environ-
ments and users.

After performing 48 signs across various backgrounds and peo-
ple performing them, 32 were correctly predicted, resulting in an
accuracy of 66.6%. It is 15–20% lower than expected based on the
cross-validation accuracy. Nonetheless, this accuracy is still promis-
ing, as it provides better results than random guessing, which would
achieve an accuracy of 25%.

Table 3 shows the prediction distribution across the four classes.
The sign South is the most recognized one, followed by Right and
Left. Apart from the sign North, they all achieved decent, more
than satisfying, scores. Its very low score of 16.6% shows that the
model struggles to recognize it. This might be due to confusion
with the sign Right, as both are similar in that two fingers—the
index and the middle finger—are extended upward or downward
and separated from the rest of the hand.

Incorrectly Predicted Correctly Predicted Success %
Left 3 9 75.0%
North 10 2 16.6%
Right 2 10 83.3%
South 1 11 91.6%

Table 3: Live classification performance using the fusion
model.

4.2.2 Latency.
Another key parameter to consider is the overall latency of the

system. Over 100 classifications, the mean time it took the fusion
model to make its prediction was 0.24 seconds. Given that the
model was run on an average laptop with no additional or high-end
computational resources, and considering the size of the model, an
average prediction time of 0.24 seconds is good.

The total time to run all 100 predictions was 4.23 minutes. It
includes capturing the frame, sending it to the computer, calculating
the output, sending the result back to the robot, and the robot
performing the movement. On average, the entire process for one
prediction, including both communication and computation, took
2.63 seconds.

This timing is acceptable given the computational resources used,
a nearby laptop. It demonstrates that effective real-time interaction
can be achieved even with accessible to everyone hardware. The
response time is sufficient for addressing real-world problems in
accessibility-focused applications, where simplicity and user ex-
perience is essential. Applied to daily task a response time under
three second is sufficient and could be further improved if needed.

4.2.3 Skin Color Considerations.

After training the model on datasets primarily composed of im-
ages of white people’s hands, it was essential to evaluate how it
would perform with individuals of different skin tones. One volun-
teer with tan/light brown skin performed the signs, and encourag-
ing results were observed. The results showed similar performance
to those in Table 3, with accuracy ranging between 70% and 85%
for the signs Left, Right, and South, and as low as 25% for North.
We can clearly observe the same performance pattern, indicating
that our model can perform well regardless of skin color. However,
the misclassification issue with North persists.

5 FUTUREWORK
The completion of this project advanced the field of human-computer
interaction and sign language detection. Various CNN architectures
were tested, and the fusion model proved to be the most accurate,
versatile, and time-efficient. It can adapt to different environments
and hand colors, and requires fairly small computational resources,
making it ideal for real-world applications in accessibility or au-
tomation.

Important progress was made through this project, but signif-
icant work is yet to be done. It would be interesting to develop a
model that is more accurate across all classes and minimizes accu-
racy discrepancies between them. A more comprehensive dataset
including diverse backgrounds and a wider range of hand colors
would be essential for improving generalization and overall accu-
racy. Additionally, extending the number of classes and increasing
the complexity of tasks performed by the robot would be valu-
able. For example, incorporating more complex dynamic signs and
enhancing the robot’s functionality by integrating sensors could
enable it to pick up objects or even navigate autonomously in its
environment.
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