Designing, Implementing, and Evaluating an
Ethereum-Based Voting Platform for Campus Elections

Nour Al-Sheikh

April 30, 2025

Abstract

This proposal outlines a project for design-
ing, implementing, and evaluating a per-
missioned Ethereum-based voting platform
specifically tailored for campus-level elec-
tions. The project involves comprehensive
literature synthesis, architecture design in-
cluding authentication and privacy, risk mit-
igation, rigorous evaluation methods, antici-
pated contributions, required resources, and
an implementation timeline. The deliverables
include a functional prototype, open datasets,
and a research paper prepared for submission
to IEEE Blockchain.

1 Introduction & Motiva-
tion

Despite the historical reliability of paper bal-
lots, traditional campus voting systems con-
tinue to face significant challenges in terms
of auditability, efficiency, and transparency.
Recent reports from various institutions high-
light substantial issues around vote integrity
and the practical difficulties of auditing elec-
tion outcomes accurately and swiftly (Specter
et al., 2020; Mannonov & Myeong}, 2023). For
example, manual recounts for student gov-
ernment elections at several U.S. universi-
ties have revealed discrepancies that are time-
consuming and costly to resolve, typically re-

quiring days or even weeks of verification and
investigation.

Blockchain technology, and specifically
Ethereum’s permissioned blockchain models,
presents a viable solution by providing a de-
centralized and cryptographically verifiable
infrastructure. This technology ensures im-
mutable and auditable election results, sig-
nificantly enhancing trust and transparency
compared to conventional centralized elec-
tronic voting systems (Kshetri & Voas, [2018;
Dagher & et all 2018). In Ethereum-based
voting systems, cryptographic methods such
as commit-reveal and homomorphic encryp-
tion have demonstrated substantial promise
for preserving voter privacy while enabling
public verifiability of the final election tally
(Adiday, [2008; (Cortier et al., [2014; Dagher &
et al., 2018).

Institutional goals within higher education
further reinforce the adoption of blockchain
technology. The U.S. Department of Edu-
cation underscores the necessity for compli-
ance with regulations like the Family Educa-
tional Rights and Privacy Act (FERPA), em-
phasizing transparency and protection of stu-
dent data. Ethereum-based blockchain vot-
ing aligns strongly with these goals by pro-
viding cryptographic guarantees for voter pri-
vacy, integrity of electoral data, and facilitat-
ing transparent audits without compromis-
ing individual voter confidentiality (Sharma
et al., 2022)).

Moreover, the broader movement toward
digital transformation in higher education in-
stitutions, documented extensively by EDU-
CAUSE and similar organizations, highlights
the critical role of innovative digital solutions
to streamline administrative operations, re-
duce costs, and improve student experiences.
Blockchain-based voting not only aligns with
these strategic digital transformation goals
but also delivers measurable operational ef-
ficiencies. Comparative studies indicate that
blockchain voting reduces the administrative
overhead associated with traditional paper-
based ballots, potentially cutting costs by up
to 50% and decreasing result processing time
from days to mere hours (Jafar et al. 2021}
West Virginia Secretary of State, 2018)).

This project proposes implementing a
small-scale Ethereum blockchain voting sys-
tem tailored specifically for campus elections
at Earlham College. The primary motiva-
tions for this project include demonstrating
tangible improvements in transparency, ef-
ficiency, and user trust, while also evalu-
ating the practical scalability and security
of blockchain technologies within an aca-
demic setting. Additionally, this system aims
to serve as a proof-of-concept to encourage
broader discussions about secure digital gov-
ernance systems at academic institutions na-
tionwide.

The following proposal will detail the com-
prehensive literature synthesis guiding this
initiative, outline the intended system archi-
tecture—including voter authentication and
privacy considerations—address critical risk
mitigation strategies, and propose rigorous
evaluation methods to assess both technical
performance and user satisfaction.

2 Related Work

Blockchain-based voting systems have at-
tracted significant scholarly attention as po-

tential replacements for traditional voting
methodologies, especially in contexts de-
manding transparency and auditability. Re-
cent developments have demonstrated multi-
ple architectures, each with distinct advan-
tages and trade-offs regarding privacy, per-
formance, and complexity.

2.1 Blockchain Voting Archi-
tectures

Blockchain voting schemes typically employ
one of three main cryptographic tallying
methods: commit—-reveal, homomorphic
encryption, and zk-SNARKSs.

Commit—Reveal Schemes. This method
involves voters submitting cryptographic
commitments of their votes, later revealing
them to be verified and counted. BroncoV-
ote, an Ethereum-based campus election sys-
tem piloted at Santa Clara University, uti-
lized this approach due to its straightforward
implementation and low computational over-
head (Dagher & et al., 2018). While com-
mit-reveal is relatively easy to implement and
highly scalable, it provides moderate privacy
protections, as votes become public after the
reveal phase (McCorry et all 2017)).

Homomorphic Tallying Schemes. Ho-
momorphic encryption allows vote aggrega-
tion directly on encrypted ballots, maintain-
ing voter privacy throughout the tallying pro-
cess. Helios pioneered this approach in elec-
tronic voting, significantly improving voter
privacy and auditability but with higher com-
putational overhead, limiting its scalability in
large elections (Adida, 2008; Cortier et al.
2014). Homomorphic schemes typically re-
quire careful cryptographic management, in-
cluding key ceremonies, to ensure security
and integrity.

zk-SNARK Schemes.
Succinct Non-Interactive Arguments of
Knowledge (zk-SNARKs) provide the
strongest available privacy guarantees by
allowing voters to prove the validity of their
ballots without revealing their choices or
identities. While promising, the complexity
and computational demands associated with
zk-SNARK schemes make them less suitable
for large-scale elections without consider-
able infrastructure investment. Academic
experiments like OzKoin and Hawk have
demonstrated theoretical feasibility but have
highlighted substantial practical challenges
(Tsang et al., [2016; Kosba et al., [2016)).

Table summarizes key comparisons
among these methodologies:

Zero-Knowledge

2.2 Permissioned Ethereum Pi-
lots in Campus Elections

Numerous academic institutions have ex-
plored permissioned Ethereum blockchain
systems for campus elections, providing valu-
able insights into their practical implemen-
tation. For example, BroncoVote at Santa
Clara University successfully handled approx-
imately 1,200 student votes, demonstrating
the practical applicability of blockchain for
campus-scale elections, despite some initial
friction with wallet management and voter
onboarding (Dagher & et al. 2018). Simi-
larly, Tsukuba City conducted a blockchain-
based election for social programs using
Ethereum on AWS infrastructure, achiev-
ing robust voter turnout and demonstrating
blockchain’s applicability beyond purely aca-
demic environments (Tsukuba City & AWS,
2018).

Pilots such as these highlight critical
factors for successful deployment, includ-
ing clear voter education, streamlined au-
thentication workflows, and proactive trust-
building measures. Empirical data sug-

gest that user adoption significantly increases
when voters perceive transparency and trust-
worthiness in the voting process, even if
the onboarding experience requires additional
initial effort (Mannonov & Myeong, 2023}
Schiarelli & Dupuis, 2023).

2.3 User Experience and On-
boarding Challenges

Ethereum-based decentralized applications
(DApps) typically require users to inter-
act through wallet interfaces, such as Meta-
Mask. Studies indicate significant user
drop-off rates during the initial onboard-
ing process—specifically, wallet installation
and private-key management phases. For
instance, an empirical usability study con-
ducted across several universities reported
a 30-40% drop-off rate during initial wallet
setup stages, primarily due to complexity and
uncertainty about security practices (Man-
nonov & Myeong), 2023)).

To mitigate this friction, streamlined
UI/UX design patterns have emerged, advo-
cating wizard-style, step-by-step workflows,
embedded wallet solutions, and contextual
help throughout the onboarding process. For
example, Polys, a blockchain voting applica-
tion from Kaspersky Lab, introduced user-
friendly interfaces with clear, step-by-step
guidance, significantly reducing setup time
and enhancing user completion rates (Lab;
2019).

2.4 Security and Vulnerability
Lessons

Security audits of early blockchain voting
platforms, including notable examples such
as Voatz and Polys, have uncovered vulner-
abilities that underscore the importance of
rigorous security practices. Voatz’s mobile
voting pilot during West Virginia elections

Table 1: Comparison of Blockchain Voting Tallying Methods

Method Privacy Scalability Complexity
Commit—Reveal Moderate High Low
Homomorphic Tallying High Moderate High
zk-SNARK Very High Low Very High

revealed substantial vulnerabilities stemming
from insufficient cryptographic validation and
weak endpoint security, resulting in signifi-
cant media coverage and reduced public trust
(Specter et al., 2020; West Virginia Secretary
of State, [2018)).

Furthermore, static and dynamic analysis
of Ethereum smart contracts for voting ap-
plications has identified common vulnerabili-
ties, including reentrancy attacks, improper
access control, and integer overflow errors.
Tools such as MythX, Slither, and Echidna
have become standard practice for Ethereum
contract auditing, providing automated de-
tection of common smart-contract vulnerabil-
ities and significantly reducing manual anal-
ysis overhead (Moreno-Sanchez et al., |2018;
Koch et al} 2018).

Overall, these studies underscore the neces-
sity of a multi-layered approach to blockchain
security that encompasses code audits, threat
modeling, proactive vulnerability manage-
ment, and continuous user education.

The insights from existing literature
strongly suggest that while blockchain vot-
ing systems present significant advantages
over traditional methods, they require care-
ful balancing of privacy, usability, and se-
curity considerations. This proposal draws
on these lessons to design a system that ad-
dresses these trade-offs explicitly, optimizing
for transparency, voter trust, and operational
efficiency within a manageable institutional
scope.

3 System Design

This section describes the end-to-end archi-
tecture for my permissioned Ethereum vot-
ing system, including the blockchain network
setup, smart contracts, authentication flow,
privacy safeguards, user interface design, and
performance objectives.

3.1 Permissioned Ethereum

Network

I will deploy a small permissioned Ethereum
network using the Clique Proof-of-Authority
(PoA) consensus protocol. Clique offers fast
block times and low computational overhead,
ideal for a campus election with under 1000
transactions per day.

e Consensus Mechanism: Clique PoA
configured for a 1-second target block
time.

e Validator Nodes:
nodes operated by:

Three authority

1. The Computer Science Department

2. The Student Government,

3. A designated Faculty Auditor
(Charlie? Yunting?)

e Network Topology:

— Validator nodes produce and vali-
date blocks.

— An archival node provides a pub-
lic JSON-RPC endpoint for audi-
tors and researchers.

— Light clients run in users’ browsers
via MetaMask or an embedded wal-
let.

e Hosting Options:

— On-premises VMs (4 vCPU, 8 GB
RAM, 100 GB SSD) managed by
campus IT.

— AWS Educate t3.medium instances
(2 vCPU, 4 GB RAM, elastic stor-
age), covered by student credits.

3.2 Smart-Contract Suite

The core functionality is implemented in
three Solidity contracts:

RegistryContract
Maintains a Merkle root of eli-
gible voter addresses. Eligibil-
ity is enforced by verifying in-
clusion proofs on-chain.

BallotContract
Implements a two-phase com-
mit—reveal protocol:

1. Commit phase: Voter
sends commitHash =
H (vote || nonce).

2. Reveal phase: Voter sub-
mits (vote,nonce) which
the contract verifies
against the stored hash.

TallyContract
Aggregates revealed ballots us-
ing off-chain Paillier encryp-
tion. After all reveals, valida-
tors jointly decrypt the sum via
a 2-of-3 threshold scheme.

Contracts will be written in Solidity 0.8,
tested with Hardhat, and leverage OpenZep-
pelin’s libraries for access control and safe
arithmetic.

3.3 Authentication Flow

User authentication proceeds in three steps:

1. Email Verification: Voter enters their
campus email; backend sends a one-time
link (Magic Link) containing a signed
JSON Web Token (JWT) valid for ten
minutes.

2. Wallet Binding: Clicking the Magic
Link opens the DApp. The client
wallet (MetaMask or embedded) signs
a challenge containing the JWT.
Upon verification, the backend calls
RegistryContract.register(address)
to whitelist that address.

3. Vote Casting: The whitelisted address
may send one commit transaction to
BallotContract. Attempts to commit
more than once are rejected on-chain.

A recovery workflow allows voters who lose
access to their wallet keys to request re- is-
suance via email; the system invalidates the
old address and registers a new one, logging
all changes for audit.

3.4 Privacy and Auditability

To protect voter privacy while enabling trans-
parency:

o Commit-reveal hides vote choices until
the reveal phase.

e Ballots are Paillier-encrypted off-chain;
on-chain storage contains only cipher-
texts and commitment hashes.

e A threshold decryption ceremony among
validators yields the final tally, ensuring
no single authority can decrypt alone.

e Future extension: integrate a zk-SNARK
circuit to prove validity of each com-
mitment without revealing the vote or
nonce, though this is scoped as future
work.

All on-chain events (Registered,
Committed, Revealed, Outcome) are public,
enabling third-party auditors to verify the
complete voting process.

3.5 User Interface

A wizard-style DApp provides a streamlined
experience:

1. Login Screen: Collects email and trig-
gers Magic Link flow.

2. Wallet Link Screen: Guides users to
sign the JW'T challenge via MetaMask
or embedded wallet.

3. Voting Screen: Presents ballot op-
tions; upon selection, automatically
sends the commit transaction.

4. Verification Screen: After reveal
phase, users enter their receipt (commit
hash) to confirm inclusion in the tally.

Contextual tooltips, a progress bar, and
an optional tutorial video ensure that aver-
age end-to-end voting time remains under 120
seconds. The interface is fully responsive for
desktop and mobile browsers.

3.6 Performance Objectives

The system is designed to meet the following
targets on a campus network:

Block Time <1 s (Clique default).

Throughput > 10 transactions/s
(enough for 2000 voters
in under 4 minutes at peak).

Transaction Latency
Commit plus reveal round-
trip < 5 s in 95" percentile.
Gas Cost Under $0.01 per vote on the
PoA network.

Monitoring via Prometheus and Grafana
will capture these metrics during pilot elec-
tions.

3.7 Extensibility

The architecture is modular:

e Contracts use a proxy pattern for up-
gradeability.

e Authentication can pivot from email-
based tokens to campus SSO if needed.

e Privacy layer can be enhanced with zk-
SNARK proofs once performance evalu-
ations are complete.

e RESTful APIs expose raw and aggre-
gated data for third-party dashboards or
mobile clients.

This design balances security, performance,
and usability, while providing clear paths for
future enhancements.

4 Security & Threat

Modeling

Ensuring the security of a blockchain voting
system requires a comprehensive threat anal-
ysis and rigorous testing regimen. I will apply
the STRIDE framework (Shostack, 2014)) to
identify and mitigate threats specific to my
architecture.

4.1 STRIDE Threat Analysis
4.1.1 Spoofing

Threat: An attacker impersonates a legiti-
mate voter or node authority.
Mitigation:

e Email-based Magic Links tied to campus
addresses for initial authentication.

e Wallet signature verification of JWTs en-
sures only the owner of a private key can
register a vote.

e Validator nodes’ PoA keys stored in secure
HSM or locked-down campus servers.

4.1.2 Tampering

Threat: Unauthorized alteration of ballots,
smart contracts, or transaction data.
Mitigation:

e All ballots stored immutably on-chain us-
ing commit-reveal; modifications reject.

e Smart contracts undergo static analysis
(Slither) and symbolic execution (MythX)
before deployment.

e Continuous integration with Echidna fuzz
tests to detect logic flaws.

4.1.3 Repudiation

Threat: Voters or administrators deny hav-
ing performed an action (e.g., casting a vote).
Mitigation:

e On-chain event logs (Registered,
Committed, Revealed) provide an im-
mutable audit trail.

e Voter-held receipts (commit hashes) enable
individual non-repudiation.

4.1.4 Information Disclosure

Threat: Leak of sensitive data, such as vote
choices before tally or private keys.
Mitigation:

e Commit-reveal protocol hides vote con-
tents until the reveal phase.

e Off-chain Paillier encryption and threshold
decryption prevent early tally decryption.

e Secure storage of private keys; recommend
using hardware wallets for high-assurance
setups.

4.1.5 Denial of Service

Threat: Flooding the network with bogus
transactions or overwhelming servers.
Mitigation:

e Permissioned network restricts who can
send transactions.

e Rate limiting at the API gateway;
CAPTCHA or email rate limits for regis-
tration.

e Monitoring and alerting via
Prometheus/Grafana for unusual traf-
fic spikes.

4.1.6 Elevation of Privilege

Threat: An attacker gains administrative
control of contracts or validator nodes.
Mitigation:

e Multi-signature (2-of-3) for critical admin-
istrative functions.

e Access controls in
via OpenZeppelin’s
AccessControl.

e Regular audits of validator node configura-
tions and key management procedures.

contracts
and

smart
Ownable

4.2 Lessons from Early
Blockchain Voting Pilots

Security audits of real-world blockchain vot-
ing applications have revealed critical vulner-
abilities:

e Voatz Mobile Voting Pilot (West
Virginia, 2018): A security analysis un-
covered flaws in the mobile client that
allowed tampering with vote casting and
potential privacy breaches (Specter et
al.,[2020). Key lessons include the neces-
sity of end-to-end cryptographic proofs
on the client and rigorous vetting of all
client-side code.

e Polys Platform (Kaspersky Lab,
2019): While offering user-friendly in-
terfaces, Polys suffered from insufficient
hardening of its web endpoints and
lacked comprehensive API rate limiting,
leaving it exposed to denial-of-service
and injection attacks (Labl 2019).

These case studies underscore the impor-
tance of both smart-contract security and ro-
bust client—server safeguards.

4.3 Ethereum-Specific Pen-

Testing and Tools

For smart-contract analysis and DApp secu-
rity testing, I will employ a layered toolchain
suitable for beginners and scalable to profes-
sional standards:

e Slither (Trail of Bits): Static analy-
sis to catch common Solidity vulnerabili-
ties (reentrancy, uninitialized state, etc.)
(Moreno-Sanchez et al., 2018).

e MythX (ConsenSys): Cloud-based
symbolic execution and fuzzing scans.
Free trial tier allows up to 5 analy-
ses/month for prototyping (Koch et al.,
2018).

e Echidna (Trail of Bits): Property-based
fuzz testing of smart contracts, generat-
ing sequences of transactions to break in-
variants (Moreno-Sanchez et al., 2018).

e Mythril (MythX’s open-source engine):
Local symbolic analysis for deeper in-
spection without API limits.

Additional best practices:

e Conduct a STRIDE-based threat model-
ing workshop early in development.

e Integrate security tests into CI/CD
pipelines (GitHub Actions or Jenkins).

e Allocate dedicated time in the time-
line for external penetration tests by CS
security-club volunteers.

Combining STRIDE analysis, lessons from
prior pilots, and a robust toolchain ensures
that my system’s security posture is rigor-
ously validated before any campus deploy-
ment.

5 Risk & Mitigation

6 Evaluation Plan

My evaluation combines user-centered stud-
ies with rigorous technical benchmarks across
three campus-wide pilot trials.

6.1 Pilot Trials Overview

I will conduct three successive pilot elections,
each open for one week, to iteratively refine
and validate the system:

1. Pilot 1 (Alpha): Small-scale test with
15-20 CS students on a mock election.

2. Pilot 2 (Beta): Medium-scale test with
50-75 mixed students/faculty, real cam-
pus SGA election.

3. Pilot 3 (Release): Full-scale test with
up to 200 participants (open call to cam-
pus community).

After each pilot, I will incorporate feedback
and fix issues before the next trial.

6.2 User Experience Study

I will assess usability and trust via standard
instruments:

System Usability Scale (SUS)
Ten-item questionnaire
yielding a 0-100 usability
score (Brooke, [1996)).

Perceived Trust
Seven-point Likert scale
adapted from Mannonov
and Myeong’s TAM study
(Mannonov & Myeong],
2023).

Task Completion Time
Time from login to suc-
cessful vote commit (target
<120 s).

Post-Task Interviews
Semi-structured feedback on
pain points, e.g. wallet link-
ing or Magic Link delays.

I will recruit 15-20 participants per pilot,
ensuring diverse representation (majors, tech
backgrounds). Hypotheses include:

e H1: Mean SUS score >70 (good usabil-
ity).

e H2: Average trust rating increases by >1
point post-vote.

e H3: 80% of participants complete voting
in under 2 minutes.

6.3 Technical Benchmarks

Performance will be measured on my PoA
network using Prometheus + Grafana:

Each pilot will generate logs for offline
analysis and comparison against the above
targets.

6.4 Security and Penetration
Testing

To validate robustness, I will perform:

e Smart-Contract Audits using Slither,
MythX, and Echidna (covering reen-
trancy, access control, overflow).

e Client-Side Penetration Tests simu-
lating MITM and malicious browser ex-
tensions on a campus lab machine.

e STRIDE Review update post-pilot to
capture any emergent threats.

A summary report of findings and mitiga-
tions will be produced after each pilot, ensur-
ing continuous security hardening.

7 Resources & Infrastruc-
ture

This project leverages both campus-managed
hardware and cloud resources for develop-
ment, testing, and pilot deployments, along-
side freely available security-analysis tooling
under academic licenses.

7.1 Compute Infrastructure

Options

On-prem VMs suffice for up to three validator
nodes plus one archival node. AWS Educate,
however, simplifies provisioning and mainte-
nance—ideal for short-term pilot trials and
load testing.

7.2 Security-Analysis Tooling

Under academic and open-source programs, [
have free or low-cost access to:

e Slither (Trail of Bits) — Static analysis
for common Solidity issues.

e MythX (ConsenSys) — Cloud-based
symbolic execution; academic tier in-
cludes 50 analyses/month.

e Echidna (Trail of Bits) — Property-
based fuzzer for smart-contract invari-
ants.

e Mythril — Local symbolic analysis en-
gine; fully open-source.

CI pipelines will invoke these tools on ev-
ery commit, covering early static checks, au-
tomated fuzzing, and final audits without ex-
tra cost.

7.3 Additional Resources

e Campus CS Lab Access: Dedicated
machines with hardware wallets for inte-
gration and user support.

Metric Target Tooling
Block time (mean) <ls Built-in JSON-RPC, Grafana dashboard
Throughput >10 tx/s Eth-bench

Commit+Reveal Latency <5 s (95th)
Gas usage per vote <60 k gas
Node recovery time <2 min

Custom JS script
Hardhat gas reporter
Simulated crash/restart

Table 3: Key Technical Performance Metrics

e Writing Center: Assistance refining
technical sections and overall prose.

e Disability Services: Guidance ensur-
ing Ul accessibility meets WCAG 2.1
standards.

8 Deliverables & Dissem-
ination

Deliverables include a deployable Ethereum
voting DApp prototype, structured open
datasets following FAIR principles, and a
research paper formatted for submission to
IEEE Blockchain. Open repositories (e.g.,
GitHub, Figshare) will be used to host
datasets, ensuring reproducibility.

9 IRB Review and Com-
pliance

Because the user-experience study involves
human subjects, Institutional Review Board
(IRB) approval is required before any pilot
trial. Earlham College’s IRB ensures that
all research involving human participants ad-
heres to ethical principles and federal regula-
tions (45 CFR 46) and college policies.

Key IRB considerations for this project in-
clude:

e Submission Type: The proposed user
surveys, interviews, and usage logging
qualify as expedited review or possibly

erempt (minimal risk) under categories
such as “surveys and interviews” and
“benign behavioral interventions.”

e Required Documentation:

— Completed IRB Ezemption Request
Form or Fxpedited Request Form.

— Informed Consent Form outlining
the purpose, procedures, risks, ben-
efits, confidentiality, and voluntary
nature of participation.

— Debriefing Statement template for
post-pilot communications.

e Timeline:

— Eaxpedited/Exempt proposals are
typically reviewed within one week.

— Full proposals require submission
by Tuesday for review at the Friday
board meeting (allow two weeks be-
fore the pilot start).

e Data Retention and Confidential-
ity:

— All survey responses and usage logs
will be stored on encrypted campus
servers and retained only for the du-
ration of the three pilot trials plus
a three-month archival period, after
which raw identifiers will be purged.

— Only aggregated, anonymized met-
rics will be published; no personally
identifiable information (PII) will
appear in any reports or datasets.

I will submit the IRB application no later
than six weeks before Pilot 1 and schedule

10

any required ethics-training modules. Close
coordination with the IRB convener (Dr.
Kyle Henning) will ensure timely approval
and compliance.

10 Conclusion

This proposal has outlined a comprehensive
plan to design, implement, and evaluate a
permissioned Ethereum voting platform tai-
lored for campus elections. By integrat-
ing robust authentication via email-issued to-
kens, a commit-reveal voting workflow, and
a permissioned PoA network, the system ad-
dresses key challenges in integrity, privacy,
and scalability. My multi-phase pilot trials,
coupled with mixed-methods evaluation (us-
ability surveys, trust metrics, performance
benchmarks, and security audits), will yield
actionable data on real-world deployment at
Earlham College.
The anticipated deliverables include:

e A fully functional DApp prototype with
smart contracts and React front-end.
An end-to-end evaluation framework and
open dataset of performance and user-
trust metrics.

e Reusable security modules
(Slither /MythX/Echidna configura-
tions) and CI pipelines for future
blockchain projects.

e Documentation of best practices for

campus-scale blockchain elections, in-
cluding governance recommendations
and contingency plans.

Beyond the campus pilot, this work will
contribute to the broader field by providing:

1. Empirical evidence on trade-offs between
usability and security in blockchain vot-
ing.

. A blueprint for other institutions to
launch secure, transparent, and au-
ditable digital elections.

11

3. Open-source artifacts (code, data, re-
ports) that adhere to open-science prin-
ciples, facilitating replication and further
research.

In closing, this project not only aims to
modernize campus governance but also to ad-
vance scholarly understanding of blockchain
in voting applications—paving the way for
more trustworthy and user-friendly election
systems in higher education and beyond.

References

Adida, B. (2008). Helios: A feasible secure
remote voting system. In Proceedings of the
useniT security SYmposium.

Brooke, J. (1996). Sus: A “quick and dirty”
usability scale. Usability Fvaluation in In-
dustry, 189-194.

Cortier, V., Galindo, D., Glondu, S., & Iz-
abachéne, M. (2014). Election verifiability
for helios under weaker trust assumptions.
In Proceedings of the european symposium

on research in computer security (esorics)
(pp. 327-344).

Dagher, G., & et al. (2018). Broncov-
ote: Secure voting system using ethereum’s
blockchain. In Proceedings of the interna-
tional conference on information systems
security and privacy (icissp) (pp. 221-
230).

Earlham College Institutional Review
Board. (2025). Institutional review
board guidelines € procedures. https://

earlham.edu/academics/specialized
-programs/collaborative-research/

institutional-review-board/. (Ac-
cessed May 2025)

Jafar, U., Haider, A., & Ali, R. (2021).
Blockchain for electronic voting sys-

https://earlham.edu/academics/specialized-programs/collaborative-research/institutional-review-board/
https://earlham.edu/academics/specialized-programs/collaborative-research/institutional-review-board/
https://earlham.edu/academics/specialized-programs/collaborative-research/institutional-review-board/
https://earlham.edu/academics/specialized-programs/collaborative-research/institutional-review-board/

tem—review and open research challenges.
Sensors, 21(17), 5874.

Koch, C., Wachsmann, S., & Boneh, D.
(2018). Zokrates: A toolbox for zksnarks
on ethereum. In Proceedings of the 2018
teee european symposium on security and
privacy workshops (pp. 47-54).

Kosba, A., Miller, A., Shi, E., Wen, Z.,
& Papamanthou, C. (2016). Hawk:
The blockchain model of cryptography and
privacy-preserving smart contracts. Pro-
ceedings of the IEEE Symposium on Secu-
rity and Privacy, 839-858.

Kshetri, N., & Voas, J. (2018). Blockchain-
enabled e-voting. IEEE Software, 35(4),
95-99.

Lab, K. (2019). Polys: Blockchain-based
voting platform for online and offline elec-
tions. https://polys.me/assets/Polys
_Whitepaper.pdfl

Mannonov, K. M., & Myeong, S. (2023).
Citizens’ perception of blockchain-based e-

voting systems: A tam approach. Sustain-
ability, 16(11), 4387.

McCorry, P., Shahandashti, S. F., & Hao, F.
(2017). A smart contract for boardroom
voting with maximum voter privacy. In
Proceedings of the 2017 acm workshop on

privacy in the electronic society (pp. 65—
75).

Moreno-Sanchez, J., Atlas, K., & Kiayias, A.
(2018). Slate: Statically analyzable smart
contracts. In Proceedings of the 2018 ieee

symposium on security and privacy (pp.
395-414).

Schiarelli, V., & Dupuis, M. (2023). Evaluat-
ing the public perception of a blockchain-
based election. In Proceedings of the acm

sigite conference on information technology
education (pp. 121-130).

Sharma, T., Gupta, R., & Patel, S. (2022).
Blockchain-based e-voting systems: A
technology review. Electronics, 15(1), 17.

Shostack, A. (2014). Threat modeling: De-
signing for security. Wiley.

Specter, M. A., Koppel, J., & Weitzner, D.
(2020). The ballot is busted before the
blockchain: A security analysis of voatz,
the first internet voting application used in
u.s. federal elections. In Proceedings of the
29th useniz security symposium (pp. 335—
348).

Tsang, P., Quinlivan, S., & Li, X.-Y. (2016).
Ozkoin: A zero knowledge ethereum voting
system. In Proceedings of the 2016 acm ccs

workshop on blockchain security and pri-
vacy (pp. 19-26).

Tsukuba City & AWS. (2018). Blockchain
and personal id-based online wvoting in
tsukuba’s society 5.0 trials. Case Study.

West Virginia Secretary of State. (2018).
West virginia mobile voting pilot. Press Re-
lease and Reports.

12

https://polys.me/assets/Polys_Whitepaper.pdf
https://polys.me/assets/Polys_Whitepaper.pdf

	Introduction & Motivation
	Related Work
	Blockchain Voting Architectures
	Permissioned Ethereum Pilots in Campus Elections
	User Experience and Onboarding Challenges
	Security and Vulnerability Lessons

	System Design
	Permissioned Ethereum Network
	Smart-Contract Suite
	Authentication Flow
	Privacy and Auditability
	User Interface
	Performance Objectives
	Extensibility

	Security & Threat Modeling
	STRIDE Threat Analysis
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Elevation of Privilege

	Lessons from Early Blockchain Voting Pilots
	Ethereum-Specific Pen-Testing and Tools

	Risk & Mitigation
	Evaluation Plan
	Pilot Trials Overview
	User Experience Study
	Technical Benchmarks
	Security and Penetration Testing

	Resources & Infrastructure
	Compute Infrastructure Options
	Security-Analysis Tooling
	Additional Resources

	Deliverables & Dissemination
	IRB Review and Compliance
	Conclusion

