
Search Through Text With Natural Language

Luke Patrick Rodgers
Earlham College

Richmond, Indiana
lrodge21@earlham.edu

Abstract

Where was the
part where Louisa

breaks her arm...or was
it that she hit her

head...?

“Louisa”

“Where was the
scene where Louisa

gets injured?”

+ 112 more results...

Showing 1 of 2

Clarify?

 “...crowded into the back
seat with Henrietta and

Louisa;”

 “...were Henrietta and
Louisa, young ladies of
nineteen and twenty...”

...she was too precipitate
by half a second, she fell
on the pavement on the

Lower Cobb, and was
taken up lifeless!...”

Search-through-text is a potential area of growth given recent natural language processing advancements
due to large language models. Search-through-text refers to finding parts of a given text based on a user
prompt, like Ctrl+F. I propose a system that allows the user to search through text not by keyword,
but with natural language. This task is approached as a natural language inference task, using a model
pre-trained for MNLI tasks as a zero-shot classifier to find parts of the text that align with the prompt.
This project has the potential to expand the possibility of what large language models can be used for, as
unlike traditional Large Language Model utilization, this task is text input to non-text output, instead
of text-to-text.

1 Introduction

The capabilities and methods of computers in pro-
cessing and understanding text has improved by leaps
and bounds in recent years. The field of natural
language processing (NLP) is experiencing a revolu-
tion [8], and new ways of working with text are be-
ing explored energetically [9]. Large language mod-
els (LLMs) are by far the most popular technology
related to NLP tasks in recent years. At the cre-
ation of the modern LLM architecture, already this
technology was able to achieve the state-of-the-art
on machine translation tasks [18]. This transformer
architecture, the core of an LLM today, is used for
a wide variety of NLP problems. Currently, LLMs

and related systems are capable of the best perfor-
mance in machine translation [6], coreference reso-
lution [4], question answering, summarization, text
classification and many other tasks [16].

“LLM” specifically just refers to a language-based
transformer architecture that is very, very large —
trained on enormous amounts of data and with bil-
lions of parameters. They are useful in that they gen-
eralize well to many tasks, which means investment
can be focused in one place [8]. Many people know of
LLMs because of the popularity of ChatGPT, which
is widely used for some of the aforementioned tasks,
as well as many other generative tasks, like writing
an email, code, or poem.

This new wave of AI has naturally found its way

1

into search features. ChatGPT can be used to find in-
formation that you would otherwise search for on the
internet. Google provides an “AI Overview” when
you search that provides a quick summarization of the
searched topic along with links to where the informa-
tion came from [7]. Bing does something similar [13].
The newspaper The Economist ’s article search fea-
ture sports encouragement to test out their new fea-
ture and “try AI-powered search” [17].

While this kind of web information search moves
forward, some of our other ways of searching remain
stagnant. In the field of searching through text, the
only prevalent option is keyword search, or as most
people know it, Ctrl+F. In my research, I intend to
develop a more flexible alternative to this, and the
following survey of relevant work (sections 2 & 3)
will cover the techniques and technologies that may
prove helpful to this goal.

2 Brief Overview of LLM
Structure and Functionality

LLMs are nigh-universally an implementation of the
transformer architecture. Introduced in 2017, the
transformer built on the models that were being used
at the time by moving from models with complex re-
current or convolutional neural networks and atten-
tion mechanisms to a model with just an attention
mechanism [18]. The vanilla transformer is sequence-
to-sequence (converts an input sequence to an output
sequence) and consists of an encoder and a decoder.
Each is made up of a stack of blocks. In the encoder,
each of these blocks is made up of a multi-head self-
attention mechanism and a feed-forward network. In
the decoder, each block is made up of these two things
and an additional multi-head self-attention mecha-
nism that works with the output of the encoder stack.
Additionally, the decoder’s self-attention mechanisms
are modified to mask tokens that come after a given
token [11]. A diagram is included as Figure 1.

Transformers now come in many different varia-
tions and have branched off in many different direc-
tions. These differences can be found in model appli-
cation, pre-training, architecture, and module design.
While originally created as a sequence-to-sequence
model, current models can be found to be encoder-
only or (in the case of GPT) decoder-only [11]. In
Figure 2, a visualization shows how these differences
in transformer architecture or otherwise have resulted
in a large variety of related LLMs.

Figure 1: Original transformer architecture diagram
taken from Vaswani et al.

Figure 2: Tree diagram from Yang et al. depicting
the variety of LLMs

2

2.1 Large Language Models in
Reading Comprehension

The most talented AI models are capable of perform-
ing better than the average human on complicated
tasks requiring a somewhat in-depth understanding
of the questions being asked. GPT-4 scored a 5 (the
maximum score) on the AP U.S. History exam [14]
which has questions like: “Which of the following
contributed most directly to the enactment of the law
in the excerpt?” (the excerpt in question is a portion
of The Declaratory Act of 1766) [2]. At the same
time, they can sometimes fail at more simple tasks -
they have shown poor performance on questions like
“Franck read to himself and John read to himself, An-
thony and Franck. In this context, was Franck read
to?” [3].

Models capabilities are measured in various ways
by various benchmarks. Frequently models are
judged based on their ability to perform tests that hu-
mans take, like the case of the AP history exam, many
of which depend on reading comprehension skills.
GPT-4 gets good marks on even the bar exam and
LSAT, and also shows strong capabilities in specif-
ically designed commonsense reasoning and reading
comprehension tasks. One of these, and one of the
ways to display LLM’s reading comprehension abili-
ties is the DROP (Discrete Reasoning Over the con-
tent of Paragraphs) benchmark, which asks models
to answer questions based on text. These questions
go beyond simple summarization or topic finding, but
ask of the model to perform simple reasoning on the
things it extracts from the text. An example they give
is to answer a question like “Who threw the longest
touchdown pass?” [5]. GPT-4 scores 80.9 where hu-
mans score 96.4 [14].

2.2 Large Language Models in Infor-
mation Retrieval

Similarly to how transformer architecture systems are
able to demonstrate reading comprehension or create
human-like prose, they can also be focused on the
task of retrieving information. This information re-
trieval can be imagined as something like what you
can do with ChatGPT: search for and receive infor-
mation in natural language. For this kind of informa-
tion retrieval, there are many efforts to improve the
abilities of models, one notable one being Retrieval-
Augmented Generation (RAG), where the inherent
capabilities of a model are improved by supplement-
ing them with additional retrieval-based memory [10].
But other, more formatted approaches to informa-
tion retrieval also exist. For example, the Univer-

sal Information Extraction (UIE) framework, which
condenses understanding of the text into a specifi-
cally structured language - an example of which is
provided in Figure 3 [12].

Figure 3: UIE framework including structured lan-
guage example taken from Lu et al.

3 Utilizing LLMs

The most performative LLMs are prohibitively costly
for an average person to develop. They require ex-
tensive resources of time and money, far beyond the
threshold that would make it practical to develop
one’s own LLM without serious support [19]. For-
tunately, it isn’t necessary to build your own LLM to
utilize their capabilities.

3.1 For downstream tasks

LLMs are best practically employed for their natu-
ral language understanding (good generalization abil-
ity), for generation tasks, and for knowledge intensive
tasks. They are able to be fine-tuned up until a point
- models with too many parameters (for example, up-
ward of 20 billion), aren’t practical for individuals or
small organizations. An overview of available mod-
els and how they differ architecture-wise can be seen
once again in Figure 2. Whether to use an LLM of
large size or to use a smaller model that can be fine
tuned generally depends on the amount of annotated
data available. With little annotated data, fine-tuned
models aren’t as wise of a choice [20].

3.2 For unique tasks

Because LLMs only convert text-to-text, they have
some inherent limitations. But they have been uti-
lized in environments outside of pure text response.
One example of this Cicero, an AI agent that uses a
transformer-based system built off of base language
model R2C2 to play the game Diplomacy. It uti-
lizes the messages that it sends and receives as part
of the game to inform its moves on the board [1].
This connects to the larger field of multimodal mod-
els, which pair an LLM with other systems of a dif-
ferent mode, for example, images. These models can

3

generally be simplified to systems that first convert
a non-text mode into tokens that an LLM can work
with, and then give those tokens to an LLM to pro-
cess [21].

3.3 Fine-tuning

Larger, general language models can be adapted, or
fine-tuned to utilize the basic language capabilities
that the larger model already has for specific tasks.
This circumvents some of the need to use massive
amounts of manually labeled data. In this process,
an additional linear output layer maps the output of
the original transformer to task specific goals [15].

4 Methods

4.1 Design

The core of the design is a a pretrained LLM that has
been trained for MNLI. The inference task is repur-
posed as a zero-shot classifier that evaluates how well
a piece of text supports the information presented in
the question, as is outlined in Yin et al. [22] This is
accompanied by a module that parses an input pdf,
a module that batches a text into meaningful groups
to be processed by the model, and a user interface
that allows the user to freely query the model and
displays the results of the query alongside the text.
An overview is provided in figure 4

User

Web Interface

PDF to be searched

Query

PDF
Storage

PDF
Parser

Text from
PDF

Raw Text
Storage

MNLI
Pretrained

LLM

Text
Parser

Batched Input
Sequences

Relevant
Parts of Text

Highlighted,
Navigable,
 Document

Data StorageMechanism Moves To ProducesResult

Figure 4: Architecture Diagram

4.1.1 User Interface

The user interface takes the form of a webpage that
a field for uploading PDFs and a field for querying
them. PDFs are displayed using a modified version
of the pdf.js viewer and backend is handled by a Flask
application. The modified version of pdf.js allows the
embedded viewer to receive and display the parts of
the text that the LLM has identified as relevant to
the query. The Flask app handles the communication
between the user and the programs on the server side.

4.1.2 PDF Parsing

PDFs were parsed with the python library pypdf.

4.1.3 MNLI Pretrained LLM

I used the pipeline architecture from Hugging Face’s
Transformer library to evaluate the relatedness of
parts of the text to the query. This pipeline utilized
a checkpoint of Facebook’s BART large model that
had been trained on the MNLI dataset.

4

5 Results

As this task is novel, generational in nature, and the
scope of the task is as varied as there are possible
queries of a text, evaluation of the system’s success
will be based on informal testing and how well I per-
ceive it to be accurately guiding the user to relevant
portions of the text.Initial results of comparing my
own answers to the program’s for a relatively short
form text with a handful of queries like ”Peter is in
danger” or ”It’s night time” show that the program’s
answers are accurate (all but one were relevant por-
tions of the text) but not exhaustive (almost half of
the parts of the text that I identified as relevant were
not identified by the program). Similarly at full scale,
when given the text ”persuasion” and prompted to
find where ”Louisa gets injured” the top five results
were all accurate, and 28/34 of all results were ac-
curate. This behavior is consistent, with results re-
sulting in appropriate responses the majority of the
time over six different texts. However, the extent to

which the program oversees potential correct answers
remains tested at a limited scale, and it seems that
this is likely a place for improvement.

6 Contributions

This project is somewhat unique in that it focuses on
the utilization of LLMs for a system that does not
output language. This conversion of fundamentally
text-to-text LLMs to text-to-something-else systems
is meaningful because it allows the powerful and pro-
hibitively expensive to recreate capabilities of LLMs
to be applied to a wider range of problems. This
project, as a contribution to this, should be insight-
ful as to what techniques do or do not work and how
they can be implemented. Relatedly, it provides in-
sight as to the capabilities of LLMs or transformer
systems themselves, with regard to how well they can
generalize. LLMs do seem to be capable of providing
the user with information that is otherwise clunky to
access via current methods.

References

[1] Meta Fundamental AI Research Diplomacy
Team (FAIR)† et al. “Human-level play in
the game of Diplomacy by combining language
models with strategic reasoning”. In: Science
378.6624 (2022), pp. 1067–1074.

[2] College Board. AP United States History Exam.
Accessed: 2024-11-26. 2024. url: https : / /

apcentral.collegeboard.org/courses/ap-

united-states-history/exam.

[3] Vittoria Dentella et al. “Testing AI on language
comprehension tasks reveals insensitivity to un-
derlying meaning”. In: Scientific Reports 14.1
(2024), p. 28083.

[4] Vladimir Dobrovolskii. “Word-level coref-
erence resolution”. In: arXiv preprint
arXiv:2109.04127 (2021).

[5] Dheeru Dua et al. “DROP: A Reading Com-
prehension Benchmark Requiring Discrete Rea-
soning Over Paragraphs”. In: Proceedings of the
2019 Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers). Ed. by Jill
Burstein, Christy Doran, and Thamar Solorio.
Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 2368–
2378. doi: 10 . 18653 / v1 / N19 - 1246. url:
https://aclanthology.org/N19-1246.

[6] Sergey Edunov. “Understanding back-
translation at scale”. In: arXiv preprint
arXiv:1808.09381 (2018).

[7] Google. Generative AI in Search: Let Google
do the searching for you. Accessed: 2024-11-25.
2024. url: https://blog.google/products/
search / generative - ai - google - search -

may-2024/.

[8] IBM. What are large language models (LLMs)?
Accessed: 2024-11-25. 2024. url: https : / /

www . ibm . com / topics / large - language -

models.

[9] Diksha Khurana et al. “Natural language pro-
cessing: state of the art, current trends and
challenges”. In: Multimedia tools and applica-
tions 82.3 (2023), pp. 3713–3744.

[10] Patrick Lewis et al. “Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks”. In:
Advances in Neural Information Processing
Systems 33 (2020), pp. 9459–9474.

[11] Tianyang Lin et al. “A survey of transformers”.
In: AI open 3 (2022), pp. 111–132.

[12] Yaojie Lu et al. “Unified structure generation
for universal information extraction”. In: arXiv
preprint arXiv:2203.12277 (2022).

[13] Microsoft. The New Bing. Accessed: 2024-11-
25. 2024. url: https://www.microsoft.com/
en-us/edge/features/the-new-bing?form=

MA13FJ.

5

[14] R OpenAI. “Gpt-4 technical report. arxiv
2303.08774”. In: View in Article 2.5 (2023).

[15] Alec Radford. “Improving language under-
standing by generative pre-training”. In:
(2018).

[16] Sebastian Ruder and contributors. NLP
Progress. Accessed: 2024-11-25. 2024. url:
https://nlpprogress.com/.

[17] The Economist. The Economist. Accessed:
2024-11-25. 2024. url: https : / / www .

economist.com/.

[18] A Vaswani. “Attention is all you need”. In: Ad-
vances in Neural Information Processing Sys-
tems (2017).

[19] Yuchen Xia et al. “Understanding the perfor-
mance and estimating the cost of llm fine-
tuning”. In: arXiv preprint arXiv:2408.04693
(2024).

[20] Jingfeng Yang et al. “Harnessing the power of
llms in practice: A survey on chatgpt and be-
yond”. In: ACM Transactions on Knowledge
Discovery from Data 18.6 (2024), pp. 1–32.

[21] Shukang Yin et al. “A survey on multimodal
large language models”. In: National Science
Review (2024), nwae403.

[22] Wenpeng Yin, Jamaal Hay, and Dan Roth.
Benchmarking Zero-shot Text Classification:
Datasets, Evaluation and Entailment Ap-
proach. 2019. arXiv: 1909.00161 [cs.CL]. url:
https://arxiv.org/abs/1909.00161.

6

