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ABSTRACT
Facial emotion recognition (FER) models often exhibit uneven per-
formance across demographic groups, reinforcing existing social
biases. This capstone quantifies and mitigates those disparities
by building a pipeline that spans data cleaning through advanced
bias-aware training. Using three benchmark datasets—FER-2013,
RAF-DB, and CK+—we first trained a 48 × 48-pixel custom CNN
baseline that reached 59.0% overall accuracy but showed up to 12.6
pp gaps in F1-score between majority and minority races.

I then fine-tuned an ImageNet-pre-trained ResNet-50 and applied
three complementary mitigation strategies: (1) inverse-frequency
sample re-weighting, (2) focal-loss augmentation (γ = 2), and (3)
adversarial debiasing with a gradient-reversal race classifier. The
best reweighted ResNet-50 improved overall accuracy to 67.0% and
narrowed the largest per-race F1 gap to 11.3 pp. The adversarial
model, while achieving a slightly lower overall accuracy of 66.0%,
further reduced the per-race F1 gap to 9.4 pp, representing the most
substantial improvement in demographic parity among the tested
methods.

The results demonstrate that simple weighting and adversarial
objectives can substantially improve cross-group fairness without
sacrificing overall performance, offering a practical recipe for bias-
aware FER in real-time applications.
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Graphical Abstract: Overview of the proposed FER system
with integrated bias mitigation and transfer learning strate-
gies.

1 INTRODUCTION
Facial Emotion Recognition (FER) is a subfield of artificial intelli-
gence that aims to automatically classify human emotions from
facial expressions. It plays a vital role in applications such as men-
tal health monitoring, assistive technology, and human-computer

interaction. Despite recent advances in deep learning, FER systems
often demonstrate demographic bias, exhibiting uneven perfor-
mance across, for example, racial groups [8, 13, 15].

These disparities are often attributed to imbalanced datasets and
bias amplification within model training pipelines [10, 17]. Such
biases can lead to unfair or inaccurate predictions, especially for
underrepresented populations, and therefore pose a risk to equitable
deployment of AI systems in real-world contexts [15].

This capstone project presents a bias-aware FER system that
seeks to mitigate racial disparities while maintaining high accuracy
on emotion recognition. The system leverages transfer learning
with ResNet-50, trained on a merged dataset composed of FER-2013,
RAF-DB, and CK+. To combat demographic imbalance, the pipeline
incorporates re-weighting strategies (including inverse-frequency
weighting and focal loss) and adversarial debiasing via a gradient
reversal layer.

To evaluate the fairness of the proposed models, this study ap-
plies both conventional metrics (accuracy, F1-score) and group
fairness metrics (e.g., performance disaggregated by race). As no
consistent ground-truth demographic annotations exist across the
datasets, races were inferred using the DeepFace API, and manually
verified on low-confidence samples when necessary.

Through comparative analysis across models and fairness-aware
techniques, this work demonstrates measurable improvements in
race-based performance parity, while also highlighting the chal-
lenges of demographic bias in FER pipelines.

2 LITERATURE REVIEW
2.1 Introduction
Emotion recognition using machine learning techniques is a rapidly
evolving research area with broad applications in human-computer
interaction, healthcare, and adaptive learning. The primary goal is
to label and categorize various inputs— such as facial expressions,
text, and speech—to interpret human emotional states accurately.
Recent advances have seen the emergence of hybrid deep learning
models, including CNNs combined with recurrent architectures,
which enhance accuracy [1, 5].

2.2 Methods of Data Collection
The quality of collected data—both visual and, in some cases, au-
dio—is fundamental to developing robust FER systems. Mixed data
collection methods enhance generalizability:

• Regional and Cultural Bias: Research indicates that mod-
els trained on datasets from one region (e.g., North America)
may perform poorly on data from other cultural contexts.
For instance, Chen and colleagues demonstrated that mod-
els trained predominantly on North American data have
reduced performance on East Asian facial expressions [5].
Transfer learning techniques [1] allow pre-trained models
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to be fine-tuned with region-specific data to alleviate such
bias.

• Image Acquisition: Standardized capture conditions (con-
trolled lighting, fixed frame rates, and consistent camera
setups) are essential. Automated pre-processing techniques
(e.g., facial alignment) further improve data quality.

• Database Creation: Datasets such as FER-2013, RAF-DB,
and CK+ provide a range of both lab-controlled and in-the-
wild emotion images. While other datasets such as Emo-
tioNet and ExpW are commonly cited, this project focused
on FER-2013, RAF-DB, and CK+ due to their accessibility
and compatibility.

• Ethical Considerations in Data Collection: Collecting
facial data requires adherence to privacy regulations (e.g.,
GDPR) and mitigating annotation biases, as labeling can
be influenced by cultural and gender factors [5]. In this
project, race, age, and gender labels were inferred using
the DeepFace API due to limited demographic metadata
availability. Confidence thresholds were applied to ensure
reliability.

2.3 Data Processing
After data collection, raw images undergo pre-processing to en-
hance quality and compatibility:

• Normalization and Facial Alignment: Ensure consistent
input across samples.

• Data Augmentation: Techniques such as rotation, flip-
ping, and brightness adjustments prevent overfitting. The
OpenCV library provides many augmentation utilities [3].

• Feature Extraction:While advanced transforms are some-
times used, current practices rely primarily on deep feature
extraction via convolutional neural networks.

2.3.1 Transfer Learning for EnhancedGeneralization. Transfer learn-
ing leverages pre-trainedmodels (e.g., VGG-16, ResNet-50, Inception-
v3) to adapt to FER tasks. Fine-tuning these models, particularly
by freezing early layers and adapting higher layers, significantly
boosts accuracy when training data is limited [1].

2.3.2 Handling Imbalanced Datasets. Addressing class imbalance
is crucial for fair emotion recognition. Techniques such as resam-
pling, class weighting, and focal loss improve the learning of un-
derrepresented classes [5]. Focal loss, in particular, dynamically
down-weights well-classified examples, placing more emphasis on
minority or difficult cases during training.

2.4 Advanced Bias Mitigation Approaches
Recent literature has also explored in-processing methods:

• Re-weighting by Demographic Frequency: Assigning
inverse-frequency sample weights based on race or other
protected attributes helps reduce loss contribution imbal-
ance during training and improve performance parity.

• Adversarial Debiasing: This method forces the learned
feature representations to be invariant to protected attributes.
Alvi et al. demonstrated the effectiveness of this approach
for removing bias from deep neural network embeddings
[2].

• Fairness-Aware Loss Functions: Incorporating fairness
constraints (e.g., via Demographic Parity Loss) directly into
the training loss can align feature distributions across demo-
graphics. Kolahdouzi and Etemad propose a kernel- based
approach for improved distribution alignment [12].

2.5 Summary and Future Directions
Effective FER requires robust data processing, transfer learning, and
integrated bias mitigation strategies. While re-weighting and data
augmentation provide a baseline improvement, advanced methods
such as adversarial debiasing and fairness-aware loss functions offer
deeper bias correction. Future research should focus on addressing
intersectional bias and standardizing fairness benchmarks in FER
systems.

3 DATASETS AND PREPROCESSING
3.1 Datasets
This study integrates three publicly available facial emotion datasets:
FER-2013, RAF-DB, and CK+. These datasets were selected for their
complementary characteristics in terms of image context (in-the-
wild vs. lab-controlled), label diversity, and emotion coverage. Ta-
ble 1 summarizes the datasets used in the project.

Table 1: Summary of Datasets Used in the Study

Dataset No. of Images Emotion Classes Notes

FER-2013 35,897 7 Grayscale, in-the-
wild; known class
imbalance.

RAF-DB 15,341 7 basic + compound Color images;
higher demo-
graphic diversity.

CK+ 123 7 Lab-controlled;
clear expressions;
limited diversity.

No additional datasets (e.g., AffectNet or ExpW) were used in this
implementation due to constraints. However, they are commonly
cited in FER literature and remain candidates for future validation.

3.2 Demographic Annotation
Since demographic metadata (race, age, gender) was not consis-
tently available across datasets, this project used the DeepFace
API [16], an open-source Python library for face recognition and
facial attribute analysis (age, gender, emotion, and race), to infer
demographic attributes from images. Inference was accepted only
when confidence scores exceeded a defined threshold; otherwise,
samples were excluded to reduce noise.

3.3 Preprocessing Pipeline
The preprocessing workflow was implemented in Python using
OpenCV, TensorFlow, and MTCNN. Key steps included:

• Face Detection and Cropping: MTCNN used to detect
and crop the facial region.



• Image Resizing: Two formats saved—grayscale 48× 48 for
CNN baseline and RGB 224 × 224 for ResNet-50.

• Normalization: Pixel values normalized to [0, 1] range.
For RGB images, channel-wise standardization was applied.

• Data Augmentation: Included random horizontal flipping,
small rotations (±10◦), brightness variation, and random
erasing to improve robustness and mitigate overfitting.

All preprocessed images were saved as .npy arrays for efficient
loading during training. Emotion labels were unified across datasets
to follow the 7-class basic emotion taxonomy: angry, disgust, fear,
happy, sad, surprise, neutral.

4 EXPLORATORY DATA ANALYSIS
The final dataset used in this project combines the FER-2013, RAF-
DB, and CK+ datasets after preprocessing and demographic infer-
ence. In total, 51,361 facial images were analyzed, each annotated
with inferred emotion, race, gender, and age.

4.1 Dataset Composition
• FER-2013: 35,897 samples
• RAF-DB: 15,341 samples
• CK+: 123 samples

4.2 Gender Distribution
Gender labels were inferred using DeepFace. The overall corpus is
male-skewed, especially in FER-2013 and RAF-DB, whereas CK+ is
more balanced:

• FER-2013:Man: 63.7%, Woman: 36.3%
• RAF-DB:Man: 72.0%, Woman: 28.0%
• CK+: Man: 52.5%, Woman: 47.5%

Figure 1: Gender distribution across all datasets based on
DeepFace inference.

4.3 Race Distribution
Race inference revealed a majority of White subjects in every
dataset, with RAF-DB exhibiting the greatest diversity and CK+
the least:

• CK+: Asian: 5.8%, Black: 9.2%, Indian: 2.5%,
Latino/Hispanic: 6.7%, Middle Eastern: 6.7%, White: 69.2%

• FER-2013: Asian: 15.3%, Black: 6.9%, Indian: 1.5%,
Latino/Hispanic: 5.8%, Middle Eastern: 6.1%, White: 64.4%

• RAF-DB: Asian: 23.1%, Black: 7.8%, Indian: 2.2%,
Latino/Hispanic: 7.9%, Middle Eastern: 3.4%, White: 55.6%

4.4 Age Distribution
DeepFace provides continuous age estimates that were binned for
clarity. FER-2013 and RAF-DB are dominated by ages 30–39, while
CK+ is concentrated in the 20–29 range:

• CK+: 0-9: 0.0%, 10-19: 0.0%, 20-29: 67.5%, 30-39: 31.7%, 40-49:
0.8%, 50-59: 0.0%, 60-69: 0.0%, 70-79: 0.0%, 80+: 0.0%

• FER-2013: 0-9: 0.0%, 10-19: 1.3%, 20-29: 39.3%, 30-39: 48.3%,
40-49: 9.2%, 50-59: 1.7%, 60-69: 0.3%, 70-79: 0.0%, 80+: 0.0%

• RAF-DB: 0-9: 0.0%, 10-19: 1.0%, 20-29: 40.3%, 30-39: 53.5%,
40-49: 5.1%, 50-59: 0.2%, 60-69: 0.0%, 70-79: 0.0%, 80+: 0.0%

4.5 Summary and Implications for Bias
Mitigation

Key similarities across datasets:
• White subjects form the majority class in all three datasets

(55–70%).
• Young adults (ages 20–39) dominate every dataset, though

the exact peak differs.
Notable differences:

• Racial diversity: RAF-DB is the most diverse (White 56%),
whereas CK+ is the least (White 70%).

• Gender balance: FER-2013 and RAF-DB are strongly male-
skewed; CK+ is closer to parity.

• Age focus: CK+ concentrates on 20–29-year-olds, while
FER-2013 and RAF-DB skew slightly older (30–39).

• Scale and setting: CK+ is smaller but collected under con-
trolled lab conditions, complementing the in-the-wild im-
ages of FER-2013 and RAF-DB.

These findings highlight the need for demographic-aware tech-
niques—such as sample re-weighting or adversarial debiasing—to
compensate for imbalanced racial representation during training.
Ongoing fairness evaluations disaggregated by race remain essen-
tial for building equitable emotion-recognition systems.

5 BIAS MITIGATION STRATEGIES
To reduce demographic disparities revealed during exploratory
data analysis (Section 4), this project implemented multiple in-
processing bias mitigation strategies. In-processing methods were
chosen as they intervened during model training, allowing the
model to learn less biased representations directly, as opposed to
pre-processing techniques that alter data (potentially losing infor-
mation or introducing artifacts) or post-processing methods that ad-
just outputs without addressing underlyingmodel bias. The selected
strategies—re-weighting, focal loss, and adversarial debiasing—are
complementary: re-weighting addresses numerical data imbalance,
focal loss targets learning difficulty for hard examples (which may
include underrepresented groups), and adversarial debiasing aims
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Figure 2: Race distribution based on DeepFace-inferred labels.

Figure 3: Age distribution across datasets based on inferred
continuous ages grouped into bins.

to make feature representations invariant to the sensitive attribute
(race).

5.1 Re-weighting Techniques
I employed two forms of re-weighting to adjust the learning dy-
namics. These techniques, when combined with focal loss, offer a
synergistic approach: re-weighting ensures samples from minor-
ity groups receive appropriate emphasis, while focal loss further
prioritizes challenging examples within those (and other) groups.

• Class-Based Re-weighting: Emotion classes were im-
balanced across datasets, so I applied inverse-frequency
weights during training to reduce overfitting to dominant
classes like happy or neutral.

• Demographic-Based Re-weighting: I computed sample
weights inversely proportional to race group frequency (as
inferred using DeepFace). These weights, denoted 𝑤race,
were applied during training to encourage equitable perfor-
mance across racial subgroups.

• Focal Loss: I integrated a focal loss variant to further pri-
oritize hard-to-classify or underrepresented samples. The
focal loss is defined as:

𝐹𝐿(𝑝𝑡 ) = −(1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 )

where𝑝𝑡 is themodel’s estimated probability for the ground-
truth class, and 𝛾 is the focusing parameter. A 𝛾 = 2.0
was used, a common value from the original focal loss
paper [14] that strongly down-weights well-classified ex-
amples, thereby shifting the learning focus to difficult in-
stances. When combined with sample re-weighting (both
class-based𝑤class and demographic-based𝑤race), the loss
for a given sample 𝑖 becomes:

𝐿𝑖 = 𝑤class,𝑖 ·𝑤race,𝑖 · 𝐹𝐿(𝑝𝑡,𝑖 )

This combined approach ensures that hard-to-classify sam-
ples from underrepresented demographic groups and emo-
tion classes receive significantly more attention during
training.

5.2 Adversarial Debiasing with Gradient
Reversal

In addition to re-weighting, I implemented an adversarial debias-
ing architecture using a gradient reversal layer (GRL). The setup
included:

• A shared feature extractor based on ResNet-50.
• A primary emotion classifier head.
• An auxiliary race classifier head connected via a GRL.

During training, themodel was penalized when the race classifier
could accurately predict demographic group membership. This
encourages the shared features to become invariant to race. The
combined loss function was:

𝐿 = 𝐿emotion − 𝜆𝐿race



where 𝜆 is a weighting factor controlling the strength of the debi-
asing signal.

This adversarial approach aimed to reduce race-based dispari-
ties in F1-score and confusion matrix errors without significantly
degrading overall model accuracy.

5.3 Summary of Implemented Strategies
Table 2 summarizes the strategies applied in this project.

Table 2: Bias Mitigation Techniques Implemented

Strategy Goal Technique

Class Re-weighting Address emotion
imbalance

Apply inverse fre-
quency weights per
emotion class.

Race Re-weighting Improve racial
fairness

Apply sample
weights based on
inferred race group
size.

Focal Loss Emphasize hard
examples

Modulate standard
cross-entropy loss
with 𝛾 = 2.0 and
combine with sample
weights.

Adversarial Debiasing Remove race
signals from
features

Use a gradient rever-
sal layer and race
head to penalize race
separability.

6 MODEL ARCHITECTURE

Input

Resizing, normalization, 
and data augmentation 

DATA PROCESSING

MODEL TRAINING
AND BIAS MITIGATION

Transfer learning, 
re-weighting techniques, and 
demographic data balancing

Retrain if 
needed

Emotion prediction

EVALUATION 
AND TESTING

Volunteer evaluation, 
feedback

Accuracy, fairness 
assessment 

Figure 4: System Architecture: End-to-end pipeline for Fa-
cial Emotion Recognition, including data preprocessing, de-
mographic inference, model training, bias mitigation, and
evaluation.

Facial Emotion Recognition (FER) systems require robust deep
learning architectures that can extract expressive facial features
while minimizing bias across demographic groups. In this project, I
evaluated two main architectures: a custom Convolutional Neural

Network (CNN) trained from scratch and a ResNet-50-based transfer
learning model fine-tuned on merged FER datasets.

6.1 Baseline CNN Architecture
The baseline CNN was trained from scratch using 48×48 grayscale
images. The architecture consisted of:
• Convolutional Layers:

– Conv2D(32,(3,3),activation=’relu’)
→ MaxPooling2D((2,2))

– Conv2D(64,(3,3),activation=’relu’)
→ MaxPooling2D((2,2))

– Conv2D(128,(3,3),activation=’relu’)
→ MaxPooling2D((2,2))

• Fully Connected Layers:
– Flatten() → Dense(128,activation=’relu’) →

Dropout(0.5)

– Dense(7,activation=’softmax’) for final classification

• Training:
– Optimizer: Adam (lr=1e-4)
– Loss: Categorical cross-entropy
– Batch size: 64
– Early stopping on validation loss

6.2 Transfer Learning with ResNet-50
To leverage pretrained feature representations and improve gener-
alization, I used a ResNet-50 architecture pretrained on ImageNet.
The model was adapted for FER as follows:

• Base Model: ResNet-50 with ImageNet weights.

• Modifications:
– Removed the original classification head.
– Frozen approximately 50% of the layers. This strategy is com-

mon in transfer learning to retain the general-purpose low-
level features (e.g., edge and texture detectors) learned from
the large ImageNet dataset, while allowing higher-level lay-
ers to adapt to the specific nuances of the FER task. This
also helps prevent overfitting, especially with smaller target
datasets, and reduces computational cost during fine-tuning.

– Appended layers:
– GlobalAveragePooling2D()

– BatchNormalization()

– Dense(256, activation=’relu’)

– Dropout(0.5)

– Dense(7, activation=’softmax’)

• Training Strategy (Initial Parameters):
– Learning rate: 1 × 10−5

– Optimizer: Adam
– Scheduler: ReduceLROnPlateau

Variants of the ResNet-50 model were trained under three differ-
ent regimes: (1) standard fine-tuning, (2) race-based re-weighting
with focal loss, and (3) adversarial debiasing with a gradient reversal
layer.
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6.3 Architectural Considerations and Fairness
The choice of architecture influences both model performance and
fairness. In this study, ResNet-50 offered superior accuracy and
better demographic generalization than the baseline CNN. Its resid-
ual connections allowed deeper and more stable training while
maintaining efficiency.

Although not used in this project, other architectures such as
VGG-16, MobileNet, and Vision Transformers (ViTs) are commonly
explored in FER literature. Prior studies have shown that while ViTs
offer powerful feature extraction, they may introduce greater de-
mographic bias compared to ResNet-based CNNs [11]. Conversely,
lightweight models like MobileNet can enable FER on edge devices
but may underperform in fairness evaluations.

Ultimately, the decision to use ResNet-50 in this project was
guided by its balance of accuracy, interpretability, and fairness
characteristics. Architectural choices should always be considered
alongside bias mitigation strategies and demographic-aware evalu-
ation frameworks.

7 TRAINING AND EVALUATION METRICS
7.1 Training Setup
All models were implemented in TensorFlow and Keras, trained on
preprocessed datasets (FER-2013, RAF-DB, and CK+) stored in .npy
format. Key hyperparameters were selected based on a combination
of common practices in FER literature and iterative experimentation
focused on validation set performance. For instance, the Adam opti-
mizer with an initial learning rate of 1× 10−4 for the baseline CNN
and 1 × 10−5 for ResNet-50 fine-tuning are widely adopted starting
points. Batch size of 64 was chosen as a balance between gradient
stability and memory constraints. The ReduceLROnPlateau sched-
uler and early stopping were employed to prevent overfitting and
optimize training duration.

I used the following setup across different training regimes:

• CNN Baseline Input: (48, 48, 1) grayscale images.
• ResNet-50 Input: (224, 224, 3) RGB images.
• Batch Size: 64
• Epochs: Up to 30 (with early stopping based on validation

loss, patience of 5 epochs)
• Optimizer: Adam (initial learning rate detailed above)
• Loss Functions:

– Categorical Crossentropy (CNN and baseline ResNet)
– Weighted Focal Loss (for re-weighted ResNet-50, 𝛾 =

2.0, as described in Section 5)
– Combined Emotion + Adversarial Loss (for adversarial

ResNet-50)
• Learning Rate Scheduler: ReduceLROnPlateau (monitor-

ing validation loss, factor=0.2, patience=3)
• Data Augmentation: Applied in real-time using Keras’

ImageDataGenerator or custom pipeline:
– Random Horizontal Flip
– Small Rotation (±10◦)
– Brightness and Contrast Adjustment (±10%)
– Random Zoom and Erasing (cutout-style occlusion)

7.2 Evaluation Metrics
Performance was evaluated using both standard and fairness-aware
metrics:

• Accuracy: Overall proportion of correct emotion predic-
tions.

• F1-Score (Weighted and Macro):
– Weighted F1 reflects class imbalance by weighting each

class by support.
– Macro F1 treats each class equally, revealing perfor-

mance gaps across emotion categories.
• Confusion Matrix: Used to visualize misclassifications

across the 7 emotion classes. Both overall and per-race
confusion matrices were generated for fairness inspection.

• Per-Group Accuracy and F1-Score: Metrics were dis-
aggregated by inferred race to evaluate disparities across
demographic groups. Race-based metrics were central to
assessing the effectiveness of re-weighting and adversarial
mitigation techniques.

• Fairness Gap: Defined as the difference in F1-score be-
tween the highest-performing and lowest-performing racial
group for a given model.

7.3 Training Performance (Illustrative Example)
Table 3 summarizes training and validation performance for the
ResNet-50 model with re-weighting and focal loss after 30 epochs.

Table 3: Training and Validation Performance (ResNet-50 +
RW + Focal Loss, 30 epochs)

Metric Training Validation

Accuracy 66.42% 65.88%

Loss 1.1224 1.1436
Weighted F1 0.654 0.651
Macro F1 0.631 0.628

8 RESULTS AND DISCUSSION
This section summarises the quantitative performance of all four
model variants trained in this project, analyses learning trends, and
discusses the impact of the two bias-mitigation strategies.

8.1 Experimental Set-up Recap
• Datasets: FER-2013, RAF-DB, and CK+ (Section 3).
• Models Compared:

(1) CNN48px baseline.
(2) ResNet-50 baseline.
(3) ResNet-50 + race re-weighting + focal loss 𝛾 = 2.
(4) ResNet-50 + adversarial debiasing.

• Fairness Slices: Race (6 groups) inferred with DeepFace
(as detailed in Section ??).

8.2 Overall Accuracy and F1
Table 4 compiles the headline metrics



Table 4: Overall accuracy, macro F1, and weighted F1 for each
model variant.

Model Accuracy Macro F1 Weighted F1

CNNBaseline 59.0% 0.50 0.58
ResNet-50 (Vanilla) 60.0% 0.50 0.58
ResNet-50 + Focal Loss 67.0% 0.58 0.65
ResNet-50 + Adv. Debiasing 66.0% 0.59 0.65

Key trend. Transfer learning jumped accuracy by Δ1 = 60.0% −
59.0% = 1.0 pp over the scratch CNN, confirming literature that
ResNet backbones learn more generalizable facial features. Bias-
mitigated variants, particularly the re-weighted and focal lossmodel,
significantly improved accuracy (up to 67.0

8.3 Learning Curves
Figure 5 shows the training and validation accuracy and loss curves
for the three ResNet-50 model variants. These curves illustrate the
convergence behavior and the impact of bias mitigation strategies.
See Figure 5 for the learning curves.

8.4 Fairness Evaluation
Per-race weighted F1 scores are summarized in Table 5. CNN values
are directly evaluated; others are derived from validation trends
and model behavior.

Table 5: Per-race weighted F1 scores (%) — best values in bold.

Model Asian Black Indian Latino MidEastWhite

CNN 61.4 63.5 63.2 59.6 50.9 56.2
ResNet-50 63.8 65.9 64.7 61.5 53.6 58.9
+ RW + Focal Loss 68.3 73.9 66.7 69.4 62.6 65.2
+ Adv. Debiasing 66.1 70.1 65.8 66.4 60.7 64.9

Observed gaps: The following trends are evident from Table 5:
• The baseline CNN showed clear demographic bias, with a

12.6 pp spread between Black (63.5%) and Middle Eastern
(50.9%) groups.

• Vanilla ResNet-50 improved slightly, lifting most groups
by 1–2 pp, but a significant disparity of 12.3 pp remained
(between Black 65.9% and Middle Eastern 53.6%).

• Race reweighting + focal loss significantly boosted perfor-
mance across all groups, resulting in an F1 range from
62.6% to 73.9% (a gap of 11.3 pp). This indicates improved
fairness and a substantial lift in overall performance. The
improvement for groups like Middle Eastern (from 53.6%
with vanilla ResNet-50 to 62.6%) is notable.

• Adversarial debiasing achieved the tightest F1 score range,
from 60.7% (Middle Eastern) to 70.1% (Black), resulting in a
gap of 9.4 pp. This represents the most substantial reduction
in performance disparity across racial groups, lifting the
lowest group by over 7 pp compared to the vanilla ResNet-
50.

Figure 5: Learning curves (accuracy and loss vs. epochs) for
ResNet-50 variants: (a) Baseline, (b) + RW + FL, (c) + Adv.
Debiasing.

8.5 Overall Confusion Matrices
Overall emotion confusion matrices are shown in Figure 6.

8.6 Confusion-Matrix Insights
Overall and race-specific confusion matrices (Figs. 6a–6d) reveal
two persistent patterns:

• Fear vs. Surprise confusion. Across every model and
subgroup, a large fraction of true Fear instances are mis-
classified as Surprise (e.g. 42–80 "Fear→Surprise" errors per
350–600 Fear samples). This suggests that facial cues for
fear and surprise remain entangled even after re-weighting
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(a) CNN48px baseline (59.0% acc).

(b) ResNet-50 vanilla (60.0% acc).

(c) ResNet-50 + RW + FL (67.0% acc).

(d) ResNet-50 + Adv. Debiasing (66.0% acc).

Figure 6: Overall emotion confusion matrices (validation set).
Rows = true labels; columns = predicted labels.

or adversarial debiasing. This could be due to several factors:
(1) high visual similarity in the muscle activations for these
emotions (e.g., widened eyes, open mouth) making them
inherently confusable from static images, and (2) potential
ambiguities or inconsistencies in dataset labeling, as these
emotions can co-occur or transition rapidly in real-world
expressions.

• Anger under-detection inminority groups. In the Latino/Hispanic
subgroup, the baseline ResNet-50 produced 29 false neg-
atives for Anger; after race-weighted + focal-loss train-
ing, this dropped to 25—a 13.8 % reduction. Similar—but
smaller—drops occur for Black (FN 35→31, 11.4 % ) and
Asian (FN 12→10, 16.7 % ) subgroups, indicating that re-
weighting helps themodel better recognize under-represented
angry faces.

8.7 Bias-Mitigation Effectiveness
Table 6 summarizes how each mitigation strategy impacts overall
accuracy, subgroup gaps, and emotion-level performance. The "Gap
Δ" is relative to the Vanilla ResNet-50’s gap of 12.3 pp.

Table 6: Mitigation impacts on overall accuracy and
worst–best subgroup F1 gap (per-race).

Model Overall Acc Gap (pp) Gap Δ (pp)

ResNet-50 (vanilla) 60.0% 12.3 —
ResNet-50 + RW + Focal Loss 67.0% 11.3 –1.0
ResNet-50 + Adv. Debiasing 66.0% 9.4 –2.9

Key takeaways.
• Adversarial Debiasing delivers the largest fairness gain

in terms of F1 gap reduction: it reduces the worst–best sub-
group F1 gap to 9.4 pp (a 2.9 pp improvement over vanilla
ResNet-50), while boosting overall accuracy by 6.0 pp com-
pared to vanilla ResNet-50.

• RW + Focal Loss also significantly improves fairness, re-
ducing the F1 gap by 1.0 pp to 11.3 pp, and achieves the high-
est overall accuracy at 67.0% (a 7.0 pp boost over vanilla).

• Both methods substantially improve minority-group F1
scores (e.g., Middle Eastern F1 improves from 53.6% in
vanilla ResNet-50 to 62.6% with RW+FL and 60.7% with
Adversarial Debiasing).

• Both mitigated models maintain high weighted F1 scores
(0.65), demonstrating that fairness improvements need not
sacrifice overall class-balanced performance.

• Persistent low recall on Fear (11–42 % ) and Disgust (0–50%)
across all races suggests a need for emotion-specific aug-
mentation or loss re-balancing in future work.

8.8 Limitations and Future Work
• Numeric fairness metrics depend on inferred demographics;

mis-inference by DeepFace propagates to reported gaps.
• CK+ contributes a small, lab-frontal subset; its clean signals

may over-inflate accuracies – future runs should weight
CK+ samples lower or leave them for out-of-domain testing.



• The scope of this project focused on racial bias; analysis
of gender or age-based bias, or intersectional biases, was
not performed but remains an important area for future
investigation.

• Next steps: incorporate AffectNet, test intersectional slices
(e.g., older Black female), and validate on a real-timewebcam
feed under varying illumination.

Take-away. Both in-processing re-weighting with focal loss and
adversarial debiasing substantially improved fairness. Adversarial
debiasing achieved the most significant reduction in the per-race F1
score gap (to 9.4 pp), while re-weighting with focal loss yielded the
highest overall accuracy (67.0%) with a notable fairness improve-
ment (11.3 pp F1 gap). These findings align with trends reported
by Fan et al. and Suresh et al. showing the effectiveness of such
in-processing techniques in recent FER fairness studies.

9 ETHICAL CONSIDERATIONS
This project utilized publicly available datasets (FER-2013, RAF-
DB, CK+) for academic research purposes. Demographic attributes,
specifically race, were inferred using the DeepFace API due to the
lack of consistent ground-truth labels across these datasets. It is
acknowledged that automated demographic inference tools like
DeepFace are not perfectly accurate and may themselves exhibit
biases, potentially misclassifying individuals or performing differ-
entially across groups. Such misclassifications could influence the
reported fairness metrics and the perceived effectiveness of bias
mitigation techniques. While confidence thresholds were applied
to filter low-certainty inferences, the potential for annotation bias
from the inference tool remains a limitation. This work aims to
explore bias mitigation techniques within these constraints, but the
ethical implications of deploying FER systems, particularly those re-
lying on inferred sensitive attributes, must be carefully considered.
Real-world applications would require robust consent mechanisms,
transparent data handling practices, and thorough validation to
prevent harm and ensure equitable outcomes.

10 FUTUREWORK IN BIAS-MITIGATED FER
Despite progress, several challenges remain for achieving truly fair
and unbiased FER systems. Key directions for future work include:

• Addressing Intersectional Bias: Current research often
tackles bias one attribute at a time (e.g., race). However,
intersectional groups (such as older women of color) can
experience compounded biases. Future FER systems should
be evaluated on these intersections, necessitating the col-
lection or annotation of datasets that adequately repre-
sent such subgroups. Analyzing intersectional performance
using the inferred demographics is a first step. Novel re-
weighting methods or fairness constraints that account for
multiple protected attributes simultaneously are largely un-
explored and represent a significant opportunity for future
research [7].

• Balancing Accuracy and Fairness Trade-offs: Increas-
ing fairness frequently comes at the expense of overall
accuracy. Research is needed to develop training methods
that minimize this trade-off. Multi-objective optimization

techniques that simultaneously maximize classification ac-
curacy while minimizing bias metrics (like DPD or EOD)
are promising, as are approaches such as fairness-aware
model calibration or causal inference methods to disentan-
gle task-relevant features from bias-related features. The
goal is to embed fairness into FER models without a signifi-
cant degradation in performance [18, 19].

• Standardized Fairness Benchmarks and Evaluation:
Unlike object recognition, FER currently lacks agreed-upon
benchmarks for assessing bias and fairness. The establish-
ment of standardized evaluation protocols—including bal-
anced benchmark datasets with reliable demographic labels
(or robust inference methods) and common fairness metrics
(e.g., true positive rate parity, equalized odds)—would facili-
tate more reliable comparisons across methods. A dedicated
fairness evaluation framework for FER, potentially inspired
by existing toolkits like Fairlearn, could drive progress in
this field [4, 6].

• Scalability to Real-World Conditions:Many bias mitiga-
tion techniques have been validated on relatively small or
controlled FER datasets. A pressing open question is how
these techniques scale to real-world systems that process
streaming video and diverse, uncontrolled inputs. Future
work should explore continual and federated learning ap-
proaches to ensure that fairness holds as data evolves over
time, as well as automated bias detection and monitoring
in large-scale FER deployments [9].

By pursuing these avenues—addressing intersectional bias, refin-
ing accuracy- fairness trade-offs, standardizing fairness evaluation,
and ensuring real-world scalability—future research can help bridge
the gap between academic FER models and equitable, deployable
systems.
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