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Abstract

This project presents a method for recommend-
ing books based on the identification of simi-
lar characters across different literary works. A
machine learning model generates personalized
recommendations by analyzing character simi-
larities within a user-provided list of previously
read books. To accomplish this, contextual em-
beddings are generated from book titles using
BERT and are concatenated with character em-
beddings derived from the Project Gutenberg
dataset.

These combined embeddings form a unified
semantic representation for each book. Co-
sine similarity is then used to compare these
representations and rank relevant recommenda-
tions. The system outputs books with charac-
ter profiles that align closely with those in the
user’s reading history, offering a deeper level
of personalization. This work contributes to
the development of semantic recommendation
systems by demonstrating the effectiveness of
integrating character-level and contextual em-
beddings to enhance recommendation accuracy
and narrative relevance.

BERT is used to generate contextual embed-
dings from book titles, while character em-
beddings are sourced from Project Gutenberg.
These are concatenated into a unified repre-
sentation for each book.Recommendations are
made using cosine similarity. The system will
return books with similar character from dif-
ferent books.This project contributes to seman-

tic recommendation systems and showcases
the value of combining multiple embedding
sources.

1 Introduction

In today’s world, most book recommendation
systems rely heavily on genre classification or
collaborative filtering. While these methods are
effective to some extent, they tend to trap read-
ers in echo chambers—offering the same type
of stories over and over. As a result, users often
miss out on discovering books that are different
in setting or theme, yet still resonate with them
on a deeper level.

This project is driven by the idea that a reader’s
attachment to a book often stems not just
from its genre, but from the characters them-
selves—their personalities, values, and emo-
tional journeys. By focusing on character-level
traits rather than surface-level metadata, the
system seeks to offer users a way to explore
more diverse and unexpected books while still
maintaining a sense of emotional continuity.

The goal of this project is to develop a rec-
ommendation engine that identifies books with
characters similar to those the user already en-
joys, regardless of genre. By combining BERT-
generated title embeddings with precomputed
character embeddings, the system forms a hy-
brid semantic representation of each book. Us-
ing cosine similarity, it then recommends new
books that feature characters with comparable
traits, helping users branch out into new stories



without losing the emotional connection they
value most.

2 Related Works

2.1 Simple Embeddings and Similarity
Measures

Subramanian highlights the effectiveness of
basic models like Word2Vec combined with
cosine similarity for generating recommenda-
tions. His work shows that even lightweight
embeddings can capture meaningful semantic
relationships between texts, although they may
lack contextual depth.

2.2 Hybrid and Multi-Embedding Models

Javaji and Sarode propose a hybrid method
that combines Sentence-BERT (SBERT) and
RoBERTa to produce high-quality document
embeddings. Their findings demonstrate that
blending multiple embedding sources enhances
recommendation accuracy. This directly
supports my model, which merges BERT-
generated title embeddings with character em-
beddings for deeper personalization.

2.3 Contextual Embedding and Semantic
Understanding

BERT’s layered architecture has proven valu-
able in various NLP tasks. Jawahar et al. show
that its lower layers capture syntactic struc-
tures, while higher layers model complex se-
mantic relationships—validating BERT’s use
in extracting nuanced meaning from book titles.

Zhang et al. further compare embedding meth-
ods in deep learning models and conclude that
BERT outperforms traditional alternatives such
as Word2Vec and Glo Ve, particularly in seman-
tic tasks. These findings reinforce my decision
to use contextual embeddings from BERT.

2.4 Character Embedding and Narrative
Modeling

Inoue et al. introduce the Charembench dataset,
a benchmark for evaluating character embed-
dings using Project Gutenberg novels. Al-
though centered on Japanese fiction, the dataset
underscores the importance of modeling char-
acter relationships in a vector space. My
project draws from this idea to build character-
aware recommendations.

Lima introduces a multi-layered embedding-
based semantic retrieval system for legal doc-
uments. This architecture mirrors my design,
which fuses title and character embeddings to
build a rich semantic representation of books.

2.5 Applications, Gaps, and Extensions

Mansur and Hasan demonstrate the utility
of semantic title embeddings derived from
Wikipedia-based data. While their system fo-
cuses on structural link analysis, it affirms
the effectiveness of semantic similarity mod-
els. My work extends theirs by incorporating
character-level information.

Gundecha et al. combine BERT embeddings
with TF-IDF for content-based recommenda-
tion using book descriptions. Their system
lacks character awareness, which is the core in-
novation of my project.

Grootendorst presents BERTopic, a technique
for clustering documents using BERT and TF-
IDE. Although developed for topic modeling, it
offers inspiration for future features like clus-
tering books based on character types or shared
themes.

Wang and Xu apply a fine-tuned BERT model
to sentiment analysis. Their findings support
my goal of fine-tuning BERT on literary cor-
pora to enhance its ability to capture character
traits and emotional nuance.



3 Results and Conclusions

Across the surveyed studies, embedding-based
models consistently demonstrate strong per-
formance in text similarity, recommendation,
and semantic analysis. Subramanian confirms
the value of Word2Vec for simple content-
based filtering, while Javaji and Sarode show
that hybrid embeddings lead to improved ac-
curacy—reinforcing my system’s multi-source
embedding approach.

Jawahar et al. and Zhang et al. validate the
use of BERT for capturing syntactic and se-
mantic richness, especially in textual domains
like book titles. Inoue et al.’s benchmark for
character embeddings adds rigor to my use of
character vectors, while Lima’s multi-layered
model confirms the viability of layered seman-
tic fusion.

The use of title embeddings by Mansur and
Hasan, and the BERT-TF-IDF approach of
Gundecha et al. affirm the effectiveness
of semantic modeling but lack the narrative
depth achieved through character embedding.
Grootendorst and Wang Xu suggest possi-
ble enhancements, thematic clustering and fine-
tuning, that can expand the impact of this sys-
tem.

Despite these advancements, a gap remains in
combining title and character embeddings for
book recommendation.This project directly ad-
dresses this underexplored area by integrating
character-level insight with contextual title rep-
resentation.

4 Opportunities for Future Work

Most current systems focus on metadata or de-
scriptions, overlooking the role of characters in
shaping reader preferences. Combining char-
acter and title embeddings offers a novel and
more human-centered approach to recommen-
dation. Several avenues exist for enhancing

this work further. One promising direction in-
volves fine-tuning BERT on literature-specific
or character-rich datasets to better capture emo-
tional tone and narrative style. Another en-
hancement could involve incorporating addi-
tional dimensions such as genre, plot arcs, or
sentiment flow to support more nuanced simi-
larity matching. Theme-based clustering tech-
niques such as BERT can also be explored to
group books or characters by common motifs
or emotional journeys. Additionally, develop-
ing an interactive front-end—such as a Stream-
lit interface—could allow users to visualize
the relationships between books and characters,
further enriching the recommendation experi-
ence. These extensions aim to deepen personal-
ization, improve recommendation quality, and
expand the system’s functionality beyond stan-
dard filtering approaches.

Preliminary Design

The proposed system will rely on two primary
sources of data: BERT-generated title embed-
dings and character embeddings derived from
the Project Gutenberg dataset. Users will begin
by providing a list of book titles they have pre-
viously read. Using a pretrained BERT model
accessed through the Sentence-Transformers li-
brary, the system will generate contextual sen-
tence embeddings that capture the semantic
meaning of each book title. Simultaneously,
character embeddings sourced from the Project
Gutenberg dataset will represent character-
level features. These two types of embed-
dings—title and character—will be concate-
nated to form a unified vector for each book.
The system will then compute cosine similar-
ity between these unified vectors and those in
a larger book database to identify and rank the
most similar books. The final output will be a
personalized list of recommended books with
similar character profiles. Development will
utilize tools and frameworks including Python,



PyTorch or TensorFlow, Hugging Face Trans-
formers, Sentence-Transformers, NumPy, pan-
das, and scikit-learn.

5 [Evaluation Plan

To evaluate the effectiveness of the character-
based book recommendation system, I will use
both quantitative analysis and qualitative user
feedback. The evaluation will begin with a cu-
rated subset of books from the Project Guten-
berg dataset, which includes title and character
information. I will create an evaluation set con-
sisting of several books and simulate user input
by selecting small reading histories of 3-5 ti-
tles. Quantitatively, the system will compute
cosine similarity between unified embeddings
(a combination of title and character vectors)
and rank recommendations based on similarity
scores.

For qualitative evaluation, I will conduct infor-
mal testing with a small group of users who
will input a list of books they’ve enjoyed and
rate the system’s recommendations. They will
also have the opportunity to provide written
feedback on why they found a recommendation
helpful or not.

For quantitative testing, cosine similarity
scores will be computed between book vectors.
I will compare the hybrid model (title + char-
acter embeddings) with a baseline (title embed-
dings only) to demonstrate the added value of
character-level information.

6 IRB Considerations

Because this project involves collecting user
feedback, 1 will submit an application to
Earlham College’s Institutional Review Board
(IRB). All participation will be voluntary and
anonymous, with minimal risk. Collected feed-
back will be used only to evaluate system effec-
tiveness.

7 Anticipated Contributions

This project aims to deliver several key con-
tributions to the field of book recommen-
dation systems. At its core, it will intro-
duce a character-driven recommendation en-
gine that leverages vector similarity to match
books based on character traits. The system
will utilize cosine similarity to compare unified
vectors composed of both character and title
embeddings, showcasing a hybrid embedding
strategy that enhances personalization by com-
bining semantic and narrative features.

In addition to these primary contributions, the
project may also explore several auxiliary fea-
tures. If time allows, BERT will be fine-tuned
on character descriptions to generate higher-
quality embeddings tailored to literary analy-
sis. Further, theme-based clustering methods
may be implemented to group books accord-
ing to shared narrative arcs or emotional tones.
Lastly, an interactive interface—possibly built
with Streamlit—may be developed to visualize
the system’s recommendations and provide an
engaging user experience.

8 Analysis of Major Risks

A primary risk is that title embeddings alone
may not provide accurate recommendations. In
this case, I may incorporate genre or book de-
scriptions to enhance results. Another risk is
the unavailability or quality of character em-
beddings. As a contingency, I will fine-tune
BERT on character descriptions to generate ap-
proximate vectors.

9 Special Resources

I will use the Project Gutenberg dataset, which
includes character data, story content, and
genre information. Required packages include:
transformers, sentence-transformers, numpy,
pandas, and scikit-learn.
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