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Abstract – The Amazon Jungle or Amazonia, is a tropical moist forest located in the Amazon River basin. The Amazon rain forest covers 6.7
million square kilometers spanning Brazil, Bolivia, Peru, Ecuador, Colombia, Venezuela, Guyana, Suriname, and French Guiana. It is the largest
area covered in trees in the world, and home to 10% of known species on Earth, making it one of the most important places for wildlife. However,
400 billion trees are under severe threat due to cattling, and logging, and illegal crops. In Colombia, the armed conflict between government
forces, the FARC guerrilla, paramilitary groups, and other actors drove illicit activities such as coca cultivation and illegal logging—deep into
remote Amazon areas, exacerbating deforestation. This project aims to assess the effectiveness of one of the components of the Colombian Peace
Agreement (2016) to reduce the rates deforestation in the Colombian Amazonia by analyzing satellite imagery.

1 Introduction

Biodiversity refers to the different kinds of life coexisting or
cohabiting in one area, including animals, plants, bacteria, and
fungi. Each one of these actors contribute to their ecosystem in
different ways and work together to support our essentials such
as clean water, food, shelter and even medicine. The Ama-
zon rain forest is one of the most important places in the world
for biodiversity; despite covering only around 1% of the plan-
et’s surface, the Amazon rain forest is home to 10% of all the
wildlife species we know [1].

The Colombian Armed Conflict, has exacerbated the illegal
logging of millions of hectares in Colombia. Beginning in the
1980s, booming U.S. demand sparked successive “cocaine bo-
nanzas,” as remote-area farmers cleared hundreds of hectares of
native forest to grow coca and reap unprecedented profits. The
resulting deforestation has created vast, fragmented patches of
degraded jungle throughout the Amazon basin. Coca (Ery-
throxylum coca) is a shrub native to South America. In their
natural form, coca leaves contain mild alkaloids that provide
gentle stimulation, aid digestion, and alleviate altitude sick-
ness without producing any psychoactive effect. However, or-
ganized crime groups process these same leaves into cocaine,
a potent and addictive stimulant. Because coca plants thrive
in warm, humid environments, illicit plantations have prolif-
erated across Colombia. In response, a range of government
agencies and NGOs have launched alternative-livelihood pro-
grams—promoting sustainable agriculture, agroforestry, and eco-
tourism—to redirect local incomes away from illegal crops and
toward environmentally sound practices that benefit both fami-
lies and forests.

The first coca crops dedicated to the production of cocaine in
Colombia were detected in 1986 [2]. Over the ensuing decades,
competition among guerrilla factions (notably FARC), paramil-
itary groups, and government forces to control coca cultiva-
tion zones drove cultivation ever deeper into remote Amazo-
nian forests, where illicit clearings and informal roads accel-

erated deforestation. With the 2016 Peace Agreement came
the promise of dismantling these networks and reclaiming land
for sustainable uses, but questions remain about how effec-
tively the agreement has curtailed drug-related forest loss. By
comparing satellite-derived deforestation rates before and after
2016, this project will assess whether reductions in coca-driven
violence align with measurable improvements in forest conser-
vation. The environmental degradation caused by the armed
conflict in Colombia has been a tragic and often forgotten con-
sequence of this protracted confrontation [3]. The presence of
illegal armed groups in the lush jungles, fragile coastal areas,
and high mountain paramos has affected Colombia’s diverse
ecosystems and natural resources due to the expansion of illicit
crops, illegal mining, and deforestation that have left deep scars
on the Colombian landscape [4].

This project uses satellite imagery to monitor and analyze
deforestation in the Amazon rainforest. By leveraging high-
resolution data from platforms such as PlanetScope, Sentinel-
2, and Landsat, I will study the vegetation loss through spec-
tral indices like NDVI and NBR, combined with change de-
tection techniques. The project focuses on identifying patterns
and rates of deforestation over time in a defined area of inter-
est within the Colombian Amazon Basin. Special attention is
given to overcoming challenges such as cloud cover and data
validation. Ultimately, the goal is to support conservation ef-
forts by providing accurate, timely insights into forest degrada-
tion and land-use change. By leveraging high-resolution data
from platforms such as PlanetScope, Sentinel-2, and Landsat,
I will be looking at the vegetation loss through spectral indices
like NDVI and NBR, combined with change detection tech-
niques. The project focuses on identifying patterns and rates of
deforestation over time in a defined area of interest within the
Amazon Basin. Special attention is given to overcoming chal-
lenges such as cloud cover and data validation. Ultimately, the
goal is to support conservation efforts by providing accurate,
timely insights into forest degradation and land-use change.



Growing up near the Amazon instilled in me a profound
sense of responsibility for its conservation. My motivation
stems from the desire to transition from theoretical knowledge
to practical application in a field I hope to dive into. I am eager
to utilize the skills I have gained in class to contribute mean-
ingfully to real-world conservation challenges. My goal is for
this project to become an open-source tool for deforestation
monitoring. I envision a system that not only aids in environ-
mental protection but also serves as an educational resource,
empowering and informing local communities, demonstrating
how technology can be a powerful ally in the fight against en-
vironmental degradation.

2 Survey

2.1 Satellites

Satellite imagery sources vary in spatial resolution, temporal
frequency, and sensor type. These characteristics need to be
considered in order to understand each of the advantages and
limitations each offers.

2.1.1 Landsat Satellite

Landsat, first placed in orbit in 1972, established the U.S. as
the world leader in land remote sensing. The Landsat system
has contributed significantly to the understanding of the Earth’s
environment, spawned revolutionary uses of space-based data
by the commercial value-added industry, and encouraged a new
generation of commercial satellites that provide regional, high-
resolution spatial images [5]. Since 1972, NASA has launched
nine Landsat satellites with different spectral range bands. Land-
sat 1–3 were equipped with a Multispectral Scanner (MSS),
which recorded data in four spectral bands: two visible and
two near-infrared. The next group, Landsat 4–7, carried ei-
ther the Thematic Mapper (TM) or Enhanced Thematic Mapper
(ETM+) sensors, which featured finer spatial resolution. (i.e.,
pixel size), and increased radiometric resolution (i.e., bit depth)
compared to the MSS. This group also had expanded spectral
coverage, adding bands in the middle-infrared and thermal-
infrared wavelengths. It is worth noting that the middle-infrared
is often referred to as the shortwave infrared (SWIR) [6]. Land-
sat 8 and 9 introduced advanced sensors and spectral capabil-
ities compared to earlier satellites. Landsat 8, has the Oper-
ational Land Imager (OLI) and the Thermal Infrared Sensor
(TIRS) [7]. Landsat 9’s OLI-2 sensor captures 14-bit data (vs.
Landsat 8’s 12-bit), allowing finer detection of subtle varia-
tions in brightness, particularly in dark (e.g., dense forests) and
bright (e.g., snow) surfaces. Both satellites share identical 11
spectral bands, spatial resolutions (15–100 m), and swath width
(185 km), ensuring seamless integration of data for long-term
environmental monitoring[8].

2.1.2 Sentinel Satellite

Optical satellites (like Sentinel-2) capture images using sun-
light reflected from Earth. They provide detailed color imagery,
but do not do well when there is cloudy weather or darkness.
Radar satellites (like Sentinel-1) use microwaves to collect data
through clouds, smoke, and even at night. However, their im-
ages look less intuitive to the human eye. Combining these two
data types, we could obtain the rich spectral details from the
optical satellites, the all-weather visibility, and structural infor-
mation from the radar satellites.

A 2020 study fused Sentinel-1 and Sentinel-2 data to map
land cover in Italy. Radar provided cloud-free structural data,
while optical data added spectral details—this improved accu-
racy in identifying crops, forests, and urban areas [9].

In Para, Brazil, PRODES and DETER data sets have been
used to monitor the Amazon. They used Sentinel-1 and Sentinel-
2 to obtain valuable data despite cloudy conditions, and Landsat-
8 for historical comparisons. They trained a CNN on labeled
PRODES data, where green, dense textures represent forests,
while brown, fragmented patches indicate deforestation. This
allowed the model to learn to recognize deforestation patterns,
achieved more than 90% precision in segmenting deforesta-
tion areas, and detected small-scale illegal logging that manual
methods often miss. [10]

2.1.3 Planet Scope

Planet Scope is a satellite imaging system that provides high-
resolution continuous views of the Earth using hundreds of
Dove satellites in orbit. Planet Scope provide daily, global im-
agery of the Earth using multi-spectral imagery (Blue, Green,
Red and Near-Infrared), and 3-5 meters resolution which al-
lows the user to see trees, roads, and fields[11]. Due to the
vast number of satellites in orbit, Planet Scope can image the
entire surface of the Earth once per day [11]. One of the bene-
fits of using this data is that PlanetScope can detect small-scale
changes within days, such as forest clearing, new burn areas,
changes in the water levels and changes in vegetation in fragile
ecosystem like wetlands. Its cloud-based access allows easy
integration with machine learning, GIS software or APIs.

2.2 Methods
2.2.1 Google Earth Engine (GEE) Workflows

The GEE is a cloud platform allowing users to access satellite
imagery from Landsat or Sentinel archives designed for large-
scale geospatial analysis. This platform is helpful because it
provides algorithms like the NDVI or time-series analysis to
be applied to the images to detect changes in the forest cover.
Additionally, machine models can be used directly on the GEE
to automate deforestation alerts[12].

GEE was used in a study focused on tracking and predict-
ing forests in Brazil. Using satellite imagery from Landsat and
Sentinel missions, the study mapped deforestation patterns at



five-year intervals and projected forest dynamics up to 2028.
A Random Forest classification model was implemented, en-
abling efficient processing of large datasets in the cloud.

This engine is a great option for reducing processing time
with its high computational power, providing access to a vast
satellite imagery catalog, including cloud-free images over long
time spans, and allowing near real-time monitoring and stream-
lined integration of machine learning algorithms.

2.2.2 NDVI Differencing: Change detection algorithm

The Normalized Difference Vegetation Index or greenness in-
dex measures vegetation’s greenness, density, and health us-
ing near-infrared and red spectral bands. By comparing the
NVDI values of two different dates, the areas of forest loss or
regrowth can be analyzed. This index is suitable for estimat-
ing vigor throughout the crop cycle based on how plants reflect
specific electromagnetic spectrum ranges. This index is helpful
to determine how healthy or unhealthy a plant is, based on how
it reflects energy and light. Healthy plants are green because
their chlorophyll pigments reflect green waves and absorb red
waves. Therefore, a healthy plant actively absorbs red light and
reflects near-infrared when photosynthesis occurs.

2.3 Challenges and Limitations
Satellite remote sensing has allowed scientist to support natural
resource management like never before. However, a significant
portion of data are not freely available. This limits the access
to information and slows the advancement of monitoring and
analysis efforts. Additionally, SRS-based data analysis is ex-
pensive due to hardware, software, qualified and trained staff
costs. Another challenge is the complexity of integrating SRS-
based data to in situ data. There is a lack of cooperation be-
tween local ecologists and satellite experts which leads to SRS
often being underused or undervalued [13].

3 Engineering Design

3.1 Data Collection
I will use Google Earth Engine (GEE) to access public archives
of Landsat and Sentinel imagery from 2014 through 2025 over
the Colombian Amazon.

3.2 Preprocessing
Within GEE, I will apply built-in routines to mask clouds and
shadows automatically and perform basic atmospheric correc-
tions. Once the images are cleaned, I will compute the Nor-
malized Difference Vegetation Index (NDVI) for each date. To
reduce noise from stray clouds or seasonal variation, I will ag-
gregate those daily or weekly values into monthly averages pro-
viding a single, clear snapshot per month.

3.3 Change Detection
I will detect forest loss using two complementary methods.
First, I will perform a simple “threshold differencing” on the
monthly NDVI composites: whenever a pixel’s greenness drops
by more than 0.2 from one month to the next, I will flag it as
a potential clearing. Second, I will train a U-Net convolutional
neural network in Python, using a set of labeled examples to
recognize clear-cut patterns. If the U-Net struggles with very
small or subtle clearings, I will fall back on a Random Forest
classifier applied to the NDVI-difference stacks.

3.4 Aggregation and Analysis
Once I have produced each month’s map of clearings, I will
convert the flagged pixels into vector patches and discard any
speckles smaller than 0.1 ha. I will then sum the area of all
cleared patches in each municipality for every month, produc-
ing two time series: one covering January 2014–December
2016 (pre-Agreement) and one covering January 2017–Decem-
ber 2023 (post-Agreement).

3.5 Reporting and Policy Alignment
I will load those time series into a Jupyter notebook or sim-
ple web dashboard that overlays key Peace Agreement mile-
stones—such as the November 2016 ratification, so I can di-
rectly compare pre and post-agreement deforestation rates. For
more robust attribution, I will include nearby control areas un-
affected by the Agreement and run a difference-in-differences
analysis.

3.6 Risks and Contingencies
• Cloud cover: If monthly composites remain noisy, I will

expand to quarterly averages or integrate Sentinel-1 radar
data as a vegetation proxy.

• Model accuracy: If the U-Net overfits, I will simplify its
architecture (fewer layers) and rely more on the Random
Forest fallback.

• Policy attribution: To avoid conflating other land-use
changes with peace-related effects, I will compare against
matched control regions and time periods.

By building on GEE’s data pipelines, Python’s machine-learning
libraries, and standard vector routines, I will ensure this design
is complete, flexible, and accessible.

4 Usage
My project will be a Python-based application designed to as-
sist in the analysis of deforestation by providing a user-friendly
interface for satellite imagery. To begin, users must upload a



series of GeoTIFF images of the region they will be analyz-
ing from different periods of time. The program then presents
a navigable timeline, allowing users to scroll through imagery
from different dates to visually track changes over time. The
core functionality lies in its ability to apply various filters, such
as the Normalized Difference Vegetation Index (NDVI), which
transforms the raw satellite data into a clear, color-coded map
that allows user to visualize empty patches. This visual output
highlights vegetation health, with a shift from green to brown
or red patches serving as a primary indicator of deforestation.
As development of this project is ongoing, additional features
are planned to be implemented as more is learned about the
field of conservation and deforestation analysis, ensuring the
tool continues to grow in capability. This streamlined process
makes the analysis of environmental change more accessible
for researchers, conservationists, and students.

5 Evaluation Plan
5.1 Technical Accuracy and Effectiveness

• Change Detection Validity: The accuracy of NDVI/NBR-
based deforestation detection will be evaluated using time-
series visual inspection, and/or cross-validation with of-
ficial deforestation datasets (IDEAM, Global Forest Watch).

• Cloud Masking and Preprocessing Quality: The suc-
cess of this project will be measured by the project’s abil-
ity to mitigate cloud cover using filters or multi-temporal
composites to preserve consistent spatial coverage.

• Spatial and Temporal Consistency: The project will be
assessed on how well it identifies deforestation patterns
across time and geography, especially post-2016 conflict
transitions.

5.2 Project Deliverables
• Technical Report Quality: Evaluated based on clarity,

depth of analysis, completeness of sections (introduc-
tion, literature review, methods, results, references), and
incorporation of feedback across drafts.

• Data Architecture and Graphical Abstracts: Assessed
for logical structure, clarity of pipeline visualization, and
consistency with actual implementation.

• Demonstration Video and Poster: Judged on commu-
nication effectiveness, visual clarity, technical explana-
tion, and audience engagement during the Academic Fair.

5.3 Tool Proficiency and Code Quality
• Geospatial Tools Usage: Proper and efficient applica-

tion of tools such as Google Earth Engine, QGIS, Python
(e.g., rasterio, geopandas), and any machine learning li-
braries.

• Reproducibility: Code and documentation on GitLab
will be reviewed for clarity, functionality, and the ability
to reproduce key outputs with minimal intervention.

• Data Management: Evaluation of how well the data is
organized, preprocessed, and annotated throughout the
project.

5.4 Research Contribution and Reflection
• Impactful Insights: The relevance and usefulness of in-

sights produced for conservation or policy-making au-
diences, especially in relation to the peace agreement’s
environmental effects.

• Critical Reflection: Evaluated through the final report
and portfolio, focusing on challenges faced, lessons learned,
and potential for future work.

6 Contributions
By creating a replicable pipeline for satellite-based forest mon-
itoring with NDVI and NBR indices, this project will provide
a scalable tool for detecting land-use changes in post-conflict
areas. The employment of multi-source satellite imagery (Plan-
etScope, Sentinel-2, and Landsat) with cloud-resilient prepro-
cessing approaches is intended to improve the reliability of re-
mote sensing in tropical regions with persistent cloud cover. In
addition to its technical importance, this project promotes en-
vironmental justice and conservation by developing visualiza-
tions and analyses that may be used to enhance policy conver-
sations and community advocacy activities. The finished tools,
code, and visual outputs will be released openly to promote
additional research and application in similar contexts.

7 Risks
Satellite remote sensing has allowed scientist to support natural
resource management like never before. However, a significant
portion of data are not freely available. This limits the access
to information and slows the advancement of monitoring and
analysis efforts. Additionally, SRS-based data analysis is ex-
pensive due to hardware, software, qualified and trained staff
costs. Another challenge is the complexity of integrating srs-
based data to in situ data. There is a lack of cooperation be-
tween local ecologists and satellite experts which leads to SRS
often being underused or undervalued. [13] Some of the con-
siderations I should take into account for the development of
my capstone projects are:

1. Choosing the right satellite data: Different satellite or
data sources provide different trade-offs such as spatial
resolution, revisit time, cost and accessibility.

2. Cloud Coverage: This is one of the biggest challenges
in tropical regions. Clouds often affect the clarity of



the images, specially during the winter (rainy season in
South America). For this, I could try using cloud mask-
ing algorithms, dry season data (that could limit the ex-
tend to which I can analysis deforestation rates) or use
SAR images (i.e Sentinel-1) that can penetrate clouds.

3. Time Range: Choosing a specific time range would help
me be consistent with dates and seasons, and determine
wether I will be monitoring recent events or long-term
trends.

4. Skills: Some of the skills/tools who were mentioned
consistently in the case studies researched, are GIS tools,
Remote Sensing Platforms (GEE, SNAP, etc), Python,
JavaScript and rasterio, geopandas, earthpy libraries.

7.1 Solutions

8 Further Development
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