
Proposal for a Personalized Music Recommendation System Using
Heartbeat Data

Kenny Shema
Earlham College

August 29, 2025

Abstract

A mobile application is proposed that customizes mu-
sic playback based on real-time heartbeat data. A low-
cost fingertip sensor streams inter-beat intervals to a
smartphone. The application processes these intervals,
classifies the listener’s state (calm, neutral, or tense),
and selects tracks that align with the user’s physiolog-
ical state. System latency and stress reduction effects
will be measured in a single-subject trial.

Keywords: heart rate variability, mobile health,
music recommendation, Bluetooth Low Energy, on-
device inference

1 Introduction

Stress affects a majority of college students each
semester. Traditional music applications rely on static
playlists that do not adapt to changing physiology. Re-
cent studies demonstrate that matching musical tempo
to heart rhythm can modulate stress via entrainment
[1]. An on-device system is presented that adapts music
in under 500 ms based on heartbeat data. The aim is
to reduce stress by selecting songs whose features align
with the listener’s current heart rate variability.

2 Related Work

2.1 Physiological Signal Integration

Van der Zwaag et al. (2013) show that heart rate vari-
ability (HRV) tracks stress and relaxation levels [1].
Egermann et al. (2013) correlate HRV changes with
emotional responses to music [2].

2.2 Feature Extraction and Classifica-
tion

Tzanetakis and Cook (2002) outline audio feature ex-
traction methods such as tempo, key, and spectral fea-
tures [3]. Panda et al. (2018) compare machine learning
models for mood classification using these features [4].

2.3 Mobile and On-Device Inference

Kim and André (2008) implement an emotion-based
recommendation engine using physiological data [5].
Anderson and Fenech (2017) demonstrate a prototype
that runs entirely on a smartphone, achieving sub-
second inference latency [6].

2.4 Gap and Contribution

Existing systems either rely on cloud services or lack
fast on-device processing. The proposed design com-
bines low latency with a lightweight recurrent neural
network on a consumer smartphone, using a $5 sensor
and no external servers.

3 System Design

Figure 1 shows the detailed data flow. It traces heart-
beat data from the user through the software stack and
back via audio and haptic feedback.

4 Implementation Details

4.1 Hardware and Data Collection

A $5 fingertip pulse sensor attaches to the listener’s fin-
ger. It records inter-beat intervals (RR-intervals) and
transmits them via Bluetooth Low Energy (BLE) to
the smartphone within 30 ms.

4.2 Data Processing Pipeline

Incoming RR-intervals are grouped into five-second
packets. Each packet is serialized using Protocol
Buffers to minimize memory use. A circular buffer
holds the most recent 60 seconds of data for feature
computation.

4.3 State Classification

A gated recurrent unit (GRU) network with three layers
(64–32–16 units) processes the buffered intervals. The

1

User Sensor Mobile App Buffer GRU Classifier

Track SelectorLibrary

Audio

Haptic

Figure 1: Detailed data flow: heartbeat signals pass through processing modules, then audio and haptic feedback
return to the user.

network outputs one of three labels: calm, neutral, or
tense. Inference finishes in under 60 ms on a mid-range
smartphone CPU.

4.4 Track Selection Algorithm
The app filters explicit content and enforces a three-
minute maximum. It then performs a cosine-similarity
search between the state label vector and precomputed
track feature vectors. Playback starts within 500 ms of
classification.

4.5 User Interface
The interface displays a real-time heart rate plot, cur-
rent state label, and play/pause controls. A consent
screen appears on first launch. The user can toggle
data logging at any time.

4.6 Software and Libraries
• BLE Communication: the FlutterBlue plugin

provides Bluetooth Low Energy support in Dart
applications [7].

• Data Serialization: Protocol Buffers for Dart
serialize RR-interval packets efficiently [8].

• Model Inference: the tflite_flutter plugin runs
TensorFlow Lite models on-device [9].

• User Interface: Flutter’s Material widgets build
the layout; fl_chart renders real-time heart-rate
plots [10].

4.7 Error Handling
If BLE disconnects, camera-based photoplethysmogra-
phy (PPG) serves as a fallback. If the model fails to

load, the last cached label is used and the event is
logged.

5 Evaluation Plan

A single-subject study with a 10-minute session will
measure:

• Latency: Time from packet receipt to playback
start (target <500 ms).

• Accuracy: Match rate between classifier labels
and self-reported states.

• Stress Reduction: Change in stress score from
a pre/post questionnaire.

6 Resources and Budget

• Pulse sensor: $5 or $80 Bangle.js version 2

• Smartphone: existing device (cost $0)

• Development tools: free and open-source

7 Risk Management

• Sensor dropout: fallback to camera-based PPG.

• App crash: catch exceptions and reload model.

• Data privacy: store and delete data on-device
within 24 hours.

2

8 Timeline
• Weeks 1–2: Integrate sensor and BLE communica-

tion.

• Weeks 3–4: Develop buffering and serialization.

• Weeks 5–6: Train and port GRU model to TFLite.

• Weeks 7–8: Implement track selection and UI.

• Weeks 9–10: Conduct self-study and collect data.

• Week 11: Analyze results and draft report.

• Week 12: Finalize paper and release code.

Acknowledgments
Thanks to Professors Charlie Peck and Yunting Yin for
their guidance and feedback.

References
[1] van der Zwaag, M. D., et al. (2013). Psychophysiol-

ogy, 50(1), 25–32.

[2] Egermann, H., Kopiez, R., & Altenmüller, E.
(2013). PLoS ONE, 8(9), e74592.

[3] Tzanetakis, G., & Cook, P. (2002). IEEE Transac-
tions on Speech and Audio Processing, 10(5), 295–
302.

[4] Panda, R., Malheiro, R., & Paiva, R. P. (2018).
IEEE Transactions on Affective Computing, 9(3),
321–332.

[5] Kim, Y. E., & André, E. (2008). ACM Transactions
on Intelligent Systems and Technology, 1(2), Article
10.

[6] Anderson, M., & Fenech, B. (2017). Journal of Mu-
sic and Emotion Research, 4(1), 17–29.

[7] Paul DeMarco, P., et al. (2020). flutter_blue:
Bluetooth plugin for Flutter. https://github.com/
pauldemarco/flutter_blue

[8] Google. (2020). Protocol Buffers for Dart. https:
//pub.dev/packages/protobuf

[9] Google. (2020). tflite_flutter. https://pub.dev/
packages/tflite_flutter

[10] Mar Mif, N., et al. (2020). fl_chart. https://pub.
dev/packages/fl_chart

3

https://github.com/pauldemarco/flutter_blue
https://github.com/pauldemarco/flutter_blue
https://pub.dev/packages/protobuf
https://pub.dev/packages/protobuf
https://pub.dev/packages/tflite_flutter
https://pub.dev/packages/tflite_flutter
https://pub.dev/packages/fl_chart
https://pub.dev/packages/fl_chart

	Introduction
	Related Work
	Physiological Signal Integration
	Feature Extraction and Classification
	Mobile and On-Device Inference
	Gap and Contribution

	System Design
	Implementation Details
	Hardware and Data Collection
	Data Processing Pipeline
	State Classification
	Track Selection Algorithm
	User Interface
	Software and Libraries
	Error Handling

	Evaluation Plan
	Resources and Budget
	Risk Management
	Timeline

